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Result

• Problem J: Free Food
• Problem C: SG Coin
• Problem L: Non-prime factors
• Problem B: Hopper
• Problem A: Largest Triangle
• Problem D: Bitwise
• Problem K: Conveyorbelts
• Problem I: Prolonged Password
• Problem E: Magical String
• (For problems G, H, F, please read the solution by yourself )

First 4 hours only A B C D E F G H I J K L
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8/18 
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3/10 
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4/10 
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47/49 
(96%)

7/12 
(58%)

41/117
(35%)

Average tries 3.73 1.69 1.98 2.75 1.75 1.76 2.00 1.43 1.67 1.04 1.50 2.34
Averages tries to solve 3.22 1.63 1.98 3.14 - 1.75 2.12 1.67 1.75 1.04 1.57 1.78

Total: 50 teams
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Free Food

Problem J

Author: Dr. Suhendry Effendy (NUS)
Tester: Dr. Felix Halim (Google), Dr. Steven Halim (NUS)



Problem

• Input: N intervals (1  N  100)

• Output: the number of days in which free food is served.

1 2 3 4 5 6 7 364 365

0 1 1 1 1 0 1 0 0



0 0 0 0 0 0 0 0 0

Solution

• Note that
– there are only 100 intervals and 

– each interval is of length at most 365. 

• We use brute-force solution.

• Initialize the bit array B[1..365] as zeros

• For each interval (si, ti), mark B[si..ti] = 1.

• Report the number of bits B[i] equal 1

1 2 3 4 5 6 7 364 365
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SG Coin

Problem C

Author: Dr. Felix Halim (Google)
Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)



Problem

• Given a block Z with HashValue Z (with 9 digits and 7 trailing zeros), 
you need to generate two blocks A and B such that

– A=H(Z,SA,TA) has 9 digits and 7 trailing zeros; and

– B=H(A,SB,TB) has 9 digits and 7 trailing zeros.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: SA

Token: TA

HashValue: A=H(Z,SA,TA)

prevHashValue: A

Transaction: SB

Token: TB

HashValue: B=H(A,SB,TB)

Block Z Block A Block B



Simple solution

• 1. Randomly generate SA and TA.

• 2. Compute A=H(Z,SA,TA)

• 3. Randomly generate SB and TB.

• 4. Compute B=H(A,SB,TB)

• 5. Output SA, TA, SB, TB.

• The running time is slow since you need to compute H().

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: SA

Token: TA

HashValue: A=H(Z,SA,TA)

prevHashValue: A

Transaction: SB

Token: TB

HashValue: B=H(A,SB,TB)

Block Z Block A Block B



Speedup 1: Use a short 

• The running time of H() depends on the length of transaction. So, we use one 
character “X” for transaction.

• 1. Randomly generate TA.

• 2. Compute A=H(Z,“X”,TA)

• 3. Randomly generate TB.

• 4. Compute B=H(A,“X”,TB)

• 5. Output “X”, TA, “X”, TB.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: “X”
Token: TA

HashValue: A=H(Z, “X”, TA)

prevHashValue: A

Transaction: “X”
Token: TB

HashValue: B=H(A, “X”, TB)

Block Z Block A Block B



Observation

• Since all HashValues have 9 digits and 7 trailing zeros, there are 
99 different HashValues:

– 010000000

– 020000000

– 030000000

– …

– 990000000



Build Lookup table

• For each hashValue , we find a token 
such that 990000000=H(, “X”, ).

• Since there are only 100 HashValues, 
we can precompute a table T[] where

– T[] equals the token  such that 
990000000=H(, “X”, )

010000000
020000000
030000000

…
…
…
…
…
…

980000000
990000000

000000000
000000001
000000002

…
…
…
…
…
…
…
…
…

999999998
999999999

Token 

HashValue 

T[]= such that 000000000=H(, “X”, )



Solution

• If the hashValue of block Z is Z, the output is

– “X”, T[Z]

– “X”, T[990000000]

• By table lookup, O(1) time.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: “X”
Token: T[Z]
HashValue: 990000000=H(Z, “X”, T[Z])

prevHashValue: 990000000
Transaction: “X”
Token: T[990000000]
HashValue: 990000000=H(A, “X”, T[990000000])

Block Z Block A Block B



Remark

• Accidentally, this problem is very similar to the problem H in 
Yangon 2018 (on last Sunday, 9 Dec).

• Note that we submit the problem last month.

• This is just a coincidence.



Non-Prime Factors

Problem L

Author: Dr. Steven Halim (NUS)
Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)



Problem

• Input: an integer i

• Output: NPF(i), which is the number of non-prime factors of i.

• Example: i = 40.
– 40 has 8 factors:

• 1, 2, 4, 5, 8, 10, 20, 40.

– 40 has 2 prime factors: 2, 5.

– 40 has 6 non-prime factors:
• 1, 4, 8, 10, 20, 40.

– NPF(40)=6.



Theorem

• The prime factorization of i = 𝑝1
𝑞1𝑝2

𝑞2 …𝑝𝑚
𝑞𝑚.

• Then, the number of factors of i = (q1+1)(q2+1)…(qm+1).
• The number of prime factors of i = m.
• The number of non-prime factors of i = (q1+1)(q2+1)…(qm+1) - m.

• Example:
– i = 40 = 23*51.
– 40 has 8=(3+1)*(1+1) factors:

• 20*50, 20*51, 21*50, 21*51, 22*50, 22*51, 23*50, 23*51.

– 40 has 2 prime factors: 20*51, 21*50.
– 40 has 6=(3+1)(1+1)-2 non-prime factors:

• 20*50, 21*51, 22*50, 22*51, 23*50, 23*51.



Solution

• Given a number i,

– For p = 2 to 𝑖

• Check if p is a prime factor if i.

– Then, we obtain the prime factorization of i = 𝑝1
𝑞1𝑝2

𝑞2 …𝑝𝑚
𝑞𝑚.

• This takes O 𝑖 time.

• After that, report NPF(i) = (q1+1)(q2+1)…(qm+1) - m.



Another solution

• Given a number i,

– Find all non-prime factors of i using a modified sieve of eratosthenes
algorithm

– Basically, run sieve of eratosthenes algorithm but cross out all the 
prime number

– Then, we count the number of non-prime numbers



Further speedup

• It is still not fast enough!

• Speedup 1: File I/O is slow.

• C language: Instead of using cin/count, use scanf/printf.

• Java language: Instead of using Scanner/System.out.println, 
use BufferedReader/PrintWriter.



Further speedup

• Speedup 2: Observe that

– There are at most 3*106 queries.

– The maximum value of i is 2*106.

• By pigeon-hole principle, some queries NPF(i) are duplicates.

• To save computational time, you can store the answers in a 
hash table.



Remark

• Since this question requires a lot of I/O, python will die 
miserably.



Hoppers

Problem B

Author: Hubert Teo Hua Kian (Stanford University)
Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)



Problem

• Input: An undirected network with N nodes and M edges
• Malware ‘hopper’: If a node is infected, its neighbors’ neighbors will be infected. 
• A network is unsafe if one node v is infected by ‘hopper’, all nodes in the network will be 

infected.
• Output: The minimum of number of additional edges to make the network unsafe.

• Example 1: Add zero edge to make G unsafe.
– If we infect node 1,
– Node 2 will be infected since 1-5-4-3-2 is of even length.
– Node 3 will be infected since 1-2-3 is of even length.
– Node 4 will be infected since 1-5-4 is of even length.
– Node 5 will be infected since 1-2-3-4-5 is of even length.

1 2 3

5 4

1 2

5

3

4



Problem

• Example 2: The original graph G is safe.
– If we infect node 1,

• Node 3 will be infected since 1-2-3 is of even length.
• Cannot further propagate.

– If we infect node 2,
• Node 4 will be infected since 2-3-4 is of even length.
• Cannot further propagate.

• After we add 1 edge (1, 3), G is unsafe.
– If we infect node 1,

• Node 2 will be infected since 1-3-2 is of even length.
• Node 3 will be infected since 1-2-3 is of even length.
• Node 4 will be infected since 1-3-2 is of even length.

1 2

4 3



Idea

• Lemma: If G does not have odd cycle, then G is safe.

• Proof: If G does not have odd cycle, then G is 2-colorable, 
say red and blue.

• If you infect a red node, all red nodes will be infected but 
not blue nodes.

• If you infect a blue node, all blue nodes will be infected but 
not red nodes.

• So, G is safe.

1 2 5

4 3 10

9

8

7

6

1 2 5

4 3 10

9

8

7

6



Idea

• Lemma: Consider an odd cycle 1 – 2 – 3 – … – n. For any node j,

– Either 1-2-3-…-j or 1-n-(n-1)-…-j is of even length.

• Proof: 

• For odd j,

– 1-2-3-…-j is of even length.

• For even j,

– 1-n-(n-1)-…-j is of even length.

1

2n

3
n-1

4

5

1

2

n-1

4

n

3

5



Idea

• Lemma: Suppose the graph G is connected and has an odd cycle. G is 
unsafe.
– After we infect a node v in the odd cycle, all nodes will be infected.

• Proof: Let 1-2-…-n be the odd cycle in G.

• For any node u in G,
– either 1-2-…-j-…-u or 1-n-(n-1)-…-j-…-u is of even length.

• Hence, there is an even-length path from 1 to u.

• All nodes are infected.

• G is unsafe.

1

2n

3
n-1

4

5

1

j

u



Theorem

• Lemma: Suppose the graph G has k connected component.
– Case 1: If G has an odd cycle, we need to add k-1 edges.

– Case 2: If G does not have an odd cycle, we need to add k edges.

• Proof for case 1:

• We add k-1 edges to
link all k components.

• If we infect u, u has an
length-even path to
all nodes in G.

• All nodes will be infected.

u



Theorem

• Lemma: Suppose the network G has k connected component.
– Case 1: If G has an odd cycle, we need to add k-1 edges.
– Case 2: If G does not have an odd cycle, we need to add k edges.

• Proof for case 2:
• We add k-1 edges to

link all k components.
• There is no odd cycle.
• So, the network is still unsafe.
• We add a link (v, w).
• u-v-w is a triangle, odd-length cycle.
• All nodes will be infected.

u

wv



Solution

• 1. Let k be the number of connected components

• 2. By DFS (or BFS), detect if there is an odd cycle.

• 3. If there is an odd cycle,

– Report k-1

– Otherwise, report k.

• This algorithm runs in O(N+M) time.



Largest Triangle

Problem A

Author: Dr. Steven Halim (NUS)
Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)



Problem

• Input: A set of points.

• Output: The area of the largest triangle.



Naïve solution

• Enumerate all 3 points.

• Find the one with the biggest area.

• This solution takes O(N3) time.

• It rendered Time-Limit-Exceeded (TLE)



A better solution

• We can reduce the number of points by filter out:

– Duplicate points

– Points not in convex hull

– Points that are collinear

• However, it is still not fast enough.
x

x

x

x x

x
x

x

x



Idea of the solution

• A triangle is said rooted at a if one of its endpoint is a.
• Let the convex hull be P = p0, p1, …, pn.

• Area = 0
• For i = 0 to n

– Set Ai = area of the largest triangle rooted at pi.
– If (Ai > Area) then Area = Ai

• Report Area

• Below, we show that “area of the largest triangle 
rooted at pi” can be computed in O(n) time.

• So, we give an O(n2) time algorithm.
p0p1

p2

p3

p4

p5

p6

p7

p8



Find the largest triangle rooted at a

• Area of the largest triangle rooted at ‘a’ can be found using an 
idea similar to the rotating caliper algorithm



Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.

p0
p1

p2

p3

p5

p4

Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.



Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2
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• This algorithm runs  in O(N) time.
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p1

p2

p3

p5

p4

a

b

c





c’



Area = p0p1p2



Area = p0p1p3



Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.
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p3

p5

p4

a
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c
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Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.

p0
p1

p2

p3

p5

p4

a

b

c





c’



Area = p0p1p3Area = p0p2p4



Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.
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Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.

p0
p1

p2

p3

p5

p4

a

b c
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

Area = p0p2p4



Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.
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p3

p5
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a
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Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.

p0
p1

p2

p3

p5

p4

a

b



c

Area = p0p2p4



Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs  in O(N) time.

p0
p1

p2

p3

p5

p4

a

b c

Area = p0p2p4





Even faster solution

• O(n2) solution can pass all test cases.

• This problem actually can be solved in O(n log n) time.
– Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 

2017.

– https://arxiv.org/pdf/1705.11035.pdf

• The above paper also showed that idea based on the 
“modified rotating caliper algorithm” cannot give an O(n) time.

https://arxiv.org/pdf/1705.11035.pdf


Remark

• 1. This is the only geometry problem in the set, added to 
diversify the problem types.

• 2. For large test cases in this problem, it requires to generate 
many points in a convex hull.

– We actually use the solution in ICPC.SG.2015 to generate the large 
test cases.

– https://open.kattis.com/problems/convex

https://open.kattis.com/problems/convex
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2-stable triangle rooted at a

• Let the convex hull be P = p0, p1, …, pn. Fixed a=p0.

• A triangle is said rooted at a if one of its endpoint is a.

• A triangle abc rooted at a is said to be 2-stable if

– ab’c, abc’  abc for all b’ and c’.

• Lemma: Suppose abc and ab’c’ are
2-stable. We have:

– b  b’  c  c’ or b’  b  c  c’in P
a

b

c

b’

c’

Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.



Bitwise



Bitwise

Given:

● Sequence of N integers: A1, A2, ..., An
● The integers is forming a circle
● The sequence is divided (partitioned) into K sections
● power(section) = the bitwise OR of all integers in that section

Determine:

● The maximum bitwise AND of the powers of the sections in an optimal 
partition of the circle of integers

1 <= K <= N <= 5*105, 0 <= Ai <= 109



Bitwise
Reverse the thinking:

● Given an integer X, can you divide the sequence so that the bitwise AND of 
the powers of the sections is at least X?

● Imagine there is a function can(X) that can answer the previous question
● Then we can “greedy the answer”:

    int ans = 0;
    for (int i = 30; i >= 0; i--) {
      int bit = 1 << i;
      if (can(ans | bit)) {
        ans |= bit;
      }
    }
    printf("%d\n", ans);



Bitwise
can(X): How to divide the sequence so that the bitwise AND of the powers of the 
sections is at least X?

● Simulation:
○ Pick a starting point in the sequence and start performing bitwise OR onwards 

until the accumulator exceeds X, then you found a section.
○ From the last point, continue the process to find the next sections until you go 

back to the starting point.
○ See if you managed to find at least K sections?

● How many starting points are there?
○ There are at most log(109) = 31 different starting points

Total complexity O(N * 31 * 31) = O(N)



Conveyor Belts



Conveyor Belts
Given:

● N junctions connected by M conveyor belts
● K producers located at the first K junctions
● Producer j produces a product each minute (x⋅K+j) where x≥0 and j=1,2,…,K.
● There is a deterministic route from a producer to the warehouse (junction N)
● Each conveyor belt only transports at most one product at any time
● No limit on the number of products at the junctions

Determine:

● Find the maximum number of producers which can be left running such that all the 
produced products can be delivered to the warehouse

1 <= K <= N <= 300, 0 <= M <= 1000



Conveyor Belts
Observation:

● This is a graph problem (junction -> node, conveyor belt -> edge)
● How do we encode this constraint in our graph:

○ Each conveyor belt only transports at most one product at any time
● We can encode the “time” dimension by blowing up a junction into K nodes

○ Junction A is represented as K nodes in the graph (node A at time 0, 1, … K-1)
■ The time wraps around. That is, time K is equivalent to time 0

○ A conveyor belt connecting from junction A to junction B is represented as
■ K edges: one edge from node A at time i to node B at time (i + 1) % K



Conveyor Belts
Maximum flow solution:

● Add two new nodes (a source node and a sink node)
● Connect the source node to all K producers

○ Add an edge from the source to Producer i at time i with capacity 1
● Connect the warehouse at all time periods to a sink with infinite capacity

○ Add an edge from Junction N at time i (for all i = 0..K-1) to the sink
● Run maximum flow from the source to the sink

○ The maxflow value is the number of producers that can be left running
○ Use Dinic’s algorithm to avoid getting time limit exceeded

■ The runtime is proportional to the maxflow value (max = K)



Prolonged Password 



Prolonged Password  
Given: 
• A string S of alphabet characters. 
• A function f(S,T) which transforms each character Si into a string TSi. 
• An integer K denoting how many times f(S,T) is performed, i.e. fK(S,T). 
• An integer M denoting the number of queries. 

• Each query contains an integer mi. 
 

Determine: 
 For each query, the mi

th character of fK(S,T) 
 
1 ≤ |S| ≤ 106; 2 ≤ |Tx| ≤ 50; 1 ≤ K ≤ 1015; 1 ≤ M ≤ 1000; 1 ≤ mi ≤ 1015. 
 



Prolonged Password 
Example: 

S = bccabac 
Ta = ab 
Tb = bac 
Tc = ac 
Td .. Tz are not important in this example. 

 

f0(S,T) = bccabac 
K = 1  f1(S,T) = bacacacabbacabac 
K = 2  f2(S,T) = bacabacabacabacabbacbacabacabbacabac 
 

 

 

a  ab 
b  bac 
c  ac 



Prolonged Password 
 
• How to generate fK(S,T) for large K? 

• K can be very large, i.e. 1015  a hint for 𝑂 log𝐾  solution 
 

• How to store fK(S,T)? 

• Recall the constraints: 1 ≤ |S| ≤ 106 and 2 ≤ |Tx| ≤ 50 

• The complete fK(S,T) can be 106 ∙ 501015  

• Each query falls within the first 1015 characters  we cannot store 1015 characters 

• We need to output only ONE character per query  we have to exploit this. 



Prolonged Password 
• We don’t need to generate the whole fK(S,T). 

 
• Define = 𝑓𝐾 𝑆,𝑇  

 

• Iterate through the string S to find out which character we should recurse down into. 
 

• E.g., 
 
 
 
 

• 𝑂 𝑀𝐾max
𝑖

𝑇𝑖 + 𝑀 𝑆  

a b a a c 

30 20 30 30 50 

Then, the 85th character can be obtained by 
expanding ‘a’ at index-3. 



Prolonged Password 
To handle large K: Matrix Exponentiation 
 

𝑁𝑎𝑎 = count of character ‘a’ in Ta. 

𝑁𝑎𝑏 = count of character ‘b’ in Ta. 

… 

𝑁𝑧𝑎 = count of character ‘a’ in Tz. 

𝑁𝑧𝑏 = count of character ‘b’ in Tz. 

 

𝑟𝑎 = count of character ‘a’. 

𝑟𝑏 = count of character ‘b’. 

… 

𝑟𝑧 = count of character ‘z’. 

 

 

 

 

𝑟𝑎 … 𝑟𝑧
𝑁𝑎𝑎 ⋯ 𝑁𝑧𝑎
⋮ ⋱ ⋮
𝑁𝑎𝑧 ⋯ 𝑁𝑧𝑧

  

 
𝑙0 𝑐,𝑇 = 𝑟  
𝑙1 𝑐,𝑇 = 𝑟 ∙ 𝑁  
𝑙2 𝑐,𝑇 = 𝑟 ∙ 𝑁 ∙ 𝑁  
… 
𝑙𝐾 𝑐,𝑇 = 𝑟 ∙ 𝑁𝐾   
 
𝑙𝑙𝑙𝐾 𝑐,𝑇 = 𝑙𝐾 𝑐,𝑇 1  



Prolonged Password 
 
Another problem: K is too large, 𝑙𝑙𝑙𝐾 𝑆,𝑇  will be overflow. 
 
Observation: 
• 2 ≤ |Ti|  it means the string length doubles at each iteration. 

• 21015  is way too large, but 𝑚𝑖 ≤ 1015 

• 1015 ≤ 250 
• We can cut down K by exploiting cycle in the transformation function. 

 
a  bda 
b  cdc a  b  c  a 
c  ab 

 



Prolonged Password 
 

 

Summary: 

• Cut down K to ≤ 50. 

• Solve by recursing and using matrix exponentiation. 

 

 



Prolonged Password 
 

 

Summary: 

• Cut down K to ≤ 50. 

• Solve by recursing and using matrix exponentiation. 

 

However, if you solve each query independently, you will get TLE as M ≤ 1000. 

 

 You need to solve all queries at once (in one pass). 



Magical String 



Magical String 
Given: 
• A string S which has no substring containing 3 or more identical characters. 
• An integer K, the number of maximum operations. 
 

An operation on S: Convert Si into another character (non-asterisk) s.t. S contains a 
substring of 3 or more identical characters. Turn such (maximal) substring into an 
asterisk. 
 

Determine: 
 The maximum number of characters in S which can be turned into asterisks with 

at most K operations. 
 
1 ≤ K, |S| ≤ 1000 
 



Magical String 
Example: 

S = abacaac 
 

If K = 1 

abacaac  abaaaac : ab*c 
ANS: 4 

 

If K = 2 

abacaac  aaacaac : *caac  *caaa : *c*  
ANS: 6 



Magical String 
Example: 

S = abacaac 
 

If K = 1 

abacaac  abaaaac : ab*c 
ANS: 4 

 

If K = 2 

abacaac  aaacaac : *caac  *caaa : *c*  
ANS: 6 

This example suggests that 
the solution is not incremental, 

i.e. the solution for (S,K) does not 
necessarily use the solution for (S,< K) 



Magical String 
Example: 

S = abacaac 
 

If K = 1 

abacaac  abaaaac : ab*c 
ANS: 4 

 

If K = 2 

abacaac  aaacaac : *caac  *caaa : *c*  
ANS: 6 

This example suggests that 
the solution is not incremental, 

i.e. the solution for (S,K) does not 
necessarily use the solution for (S,< K) 

Greedy does not work! 

Also, the operations order does matter. 



Magical String 
first attempt … dynamic programming 

 

f(S, K)  The maximum number of characters in S which can be turned into asterisks with at most K 
operations (i.e. the answer we want). 

 
𝑓 𝑆,𝐾 = max

𝑖∈𝑣𝑎𝑣𝑖𝑣 𝑆,𝑖
𝑗=[0,𝐾)

(𝑓 𝐴, 𝑗 + 𝑓 𝐵,𝐾 − 𝑗 − 1 ) 

 

 

 

abacaa aabacbba 

abacaaccbaabacbba 
Time complexity: 𝑂 𝑆 3 ∙ 𝐾2  

 
Definitely TLE 



Magical String 
… we need a muse and see the problem from a different perspective 
 

Consider the Weighted Interval Scheduling Problem. 

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no 
overlapping intervals and the total weight is maximized. 

 

It’s a similar problem! 

 

 

 

abacaaccbaabacbba 
aba 
  acaa 
    aac 
     acc 
        baa 
         aaba 
             cbb 
              bba 



Magical String 
… we need a muse and see the problem from a different perspective 
 

Consider the Weighted Interval Scheduling Problem. 

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no 
overlapping intervals and the total weight is maximized. 

 

It’s a similar problem! 

 

 

 

abacaaccbaabacbba 
aba 
  acaa 
    aac 
     acc 
        baa 
         aaba 
             cbb 
              bba 

… but different abacaa 
aba 
  acaa 



Magical String 
 

 

 

 
 

In Weighted Interval Scheduling Problem, we can only take one interval. 

 

In Magical String, we can take “both” intervals. 



Magical String 
• Let SINGLE be the set of all intervals obtained individually from S. 

• Let EXTEND be the set of all intervals obtained by extending SINGLE 
• [a, b] is in EXTEND iff its size is ≥ 3 and there is an interval [L, R] in SINGLE which can be cut into [a, b] by 

other intervals in SINGLE. 
• By definition, all intervals in SINGLE are in EXTEND. 

 

 The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the 
solution for Magical String. 

 

 abacaa 
aba 
  acaa 
   caa 

 
[1,3] 
[3,6] 
[4,6] [4, 6] is obtained by cutting [3, 6] with [1, 3]. 



Magical String 
• Generate SINGLE 𝑂 𝑆  

• Generate EXTEND 𝑂 𝑆 2  

 

Size of EXTEND = 𝑂 𝑆  

 

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝐾  



Magical String 
• Generate SINGLE 𝑂 𝑆  

• Generate EXTEND 𝑂 𝑆 2  

 

Size of EXTEND = 𝑂 𝑆  

 

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝐾  
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