
Contest debriefing

Scientific Committee

Result

• Problem J: Free Food
• Problem C: SG Coin
• Problem L: Non-prime factors
• Problem B: Hopper
• Problem A: Largest Triangle
• Problem D: Bitwise
• Problem K: Conveyorbelts
• Problem I: Prolonged Password
• Problem E: Magical String
• (For problems G, H, F, please read the solution by yourself )

First 4 hours only A B C D E F G H I J K L

Solved / Tries
18/97
(19%)

38/71
(54%)

43/93
(46%)

7/33
(21%)

0/7
(0%)

20/44
(45%)

8/18
(44%)

3/10
(30%)

4/10
(40%)

47/49
(96%)

7/12
(58%)

41/117
(35%)

Average tries 3.73 1.69 1.98 2.75 1.75 1.76 2.00 1.43 1.67 1.04 1.50 2.34
Averages tries to solve 3.22 1.63 1.98 3.14 - 1.75 2.12 1.67 1.75 1.04 1.57 1.78

Total: 50 teams

Ken

Felix

Suhendry

Free Food

Problem J

Author: Dr. Suhendry Effendy (NUS)
Tester: Dr. Felix Halim (Google), Dr. Steven Halim (NUS)

Problem

• Input: N intervals (1  N  100)

• Output: the number of days in which free food is served.

1 2 3 4 5 6 7 364 365

0 1 1 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0

Solution

• Note that
– there are only 100 intervals and

– each interval is of length at most 365.

• We use brute-force solution.

• Initialize the bit array B[1..365] as zeros

• For each interval (si, ti), mark B[si..ti] = 1.

• Report the number of bits B[i] equal 1

1 2 3 4 5 6 7 364 365

Solution

• Note that
– there are only 100 intervals and

– each interval is of length at most 365.

• We use brute-force solution.

• Initialize the bit array B[1..365] as zeros

• For each interval (si, ti), mark B[si..ti] = 1.

• Report the number of bits B[i] equal 1

1 2 3 4 5 6 7 364 365

0 1 1 1 0 0 0 0 0

Solution

• Note that
– there are only 100 intervals and

– each interval is of length at most 365.

• We use brute-force solution.

• Initialize the bit array B[1..365] as zeros

• For each interval (si, ti), mark B[si..ti] = 1.

• Report the number of bits B[i] equal 1

1 2 3 4 5 6 7 364 365

0 1 1 1 1 0 0 0 0

Solution

• Note that
– there are only 100 intervals and

– each interval is of length at most 365.

• We use brute-force solution.

• Initialize the bit array B[1..365] as zeros

• For each interval (si, ti), mark B[si..ti] = 1.

• Report the number of bits B[i] equal 1

1 2 3 4 5 6 7 364 365

0 1 1 1 1 0 1 0 0

SG Coin

Problem C

Author: Dr. Felix Halim (Google)
Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)

Problem

• Given a block Z with HashValue Z (with 9 digits and 7 trailing zeros),
you need to generate two blocks A and B such that

– A=H(Z,SA,TA) has 9 digits and 7 trailing zeros; and

– B=H(A,SB,TB) has 9 digits and 7 trailing zeros.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: SA

Token: TA

HashValue: A=H(Z,SA,TA)

prevHashValue: A

Transaction: SB

Token: TB

HashValue: B=H(A,SB,TB)

Block Z Block A Block B

Simple solution

• 1. Randomly generate SA and TA.

• 2. Compute A=H(Z,SA,TA)

• 3. Randomly generate SB and TB.

• 4. Compute B=H(A,SB,TB)

• 5. Output SA, TA, SB, TB.

• The running time is slow since you need to compute H().

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: SA

Token: TA

HashValue: A=H(Z,SA,TA)

prevHashValue: A

Transaction: SB

Token: TB

HashValue: B=H(A,SB,TB)

Block Z Block A Block B

Speedup 1: Use a short

• The running time of H() depends on the length of transaction. So, we use one
character “X” for transaction.

• 1. Randomly generate TA.

• 2. Compute A=H(Z,“X”,TA)

• 3. Randomly generate TB.

• 4. Compute B=H(A,“X”,TB)

• 5. Output “X”, TA, “X”, TB.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: “X”
Token: TA

HashValue: A=H(Z, “X”, TA)

prevHashValue: A

Transaction: “X”
Token: TB

HashValue: B=H(A, “X”, TB)

Block Z Block A Block B

Observation

• Since all HashValues have 9 digits and 7 trailing zeros, there are
99 different HashValues:

– 010000000

– 020000000

– 030000000

– …

– 990000000

Build Lookup table

• For each hashValue , we find a token
such that 990000000=H(, “X”, ).

• Since there are only 100 HashValues,
we can precompute a table T[] where

– T[] equals the token  such that
990000000=H(, “X”, )

010000000
020000000
030000000

…
…
…
…
…
…

980000000
990000000

000000000
000000001
000000002

…
…
…
…
…
…
…
…
…

999999998
999999999

Token 

HashValue 

T[]= such that 000000000=H(, “X”, )

Solution

• If the hashValue of block Z is Z, the output is

– “X”, T[Z]

– “X”, T[990000000]

• By table lookup, O(1) time.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: Z

prevHashValue: Z

Transaction: “X”
Token: T[Z]
HashValue: 990000000=H(Z, “X”, T[Z])

prevHashValue: 990000000
Transaction: “X”
Token: T[990000000]
HashValue: 990000000=H(A, “X”, T[990000000])

Block Z Block A Block B

Remark

• Accidentally, this problem is very similar to the problem H in
Yangon 2018 (on last Sunday, 9 Dec).

• Note that we submit the problem last month.

• This is just a coincidence.

Non-Prime Factors

Problem L

Author: Dr. Steven Halim (NUS)
Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)

Problem

• Input: an integer i

• Output: NPF(i), which is the number of non-prime factors of i.

• Example: i = 40.
– 40 has 8 factors:

• 1, 2, 4, 5, 8, 10, 20, 40.

– 40 has 2 prime factors: 2, 5.

– 40 has 6 non-prime factors:
• 1, 4, 8, 10, 20, 40.

– NPF(40)=6.

Theorem

• The prime factorization of i = 𝑝1
𝑞1𝑝2

𝑞2 …𝑝𝑚
𝑞𝑚.

• Then, the number of factors of i = (q1+1)(q2+1)…(qm+1).
• The number of prime factors of i = m.
• The number of non-prime factors of i = (q1+1)(q2+1)…(qm+1) - m.

• Example:
– i = 40 = 23*51.
– 40 has 8=(3+1)*(1+1) factors:

• 20*50, 20*51, 21*50, 21*51, 22*50, 22*51, 23*50, 23*51.

– 40 has 2 prime factors: 20*51, 21*50.
– 40 has 6=(3+1)(1+1)-2 non-prime factors:

• 20*50, 21*51, 22*50, 22*51, 23*50, 23*51.

Solution

• Given a number i,

– For p = 2 to 𝑖

• Check if p is a prime factor if i.

– Then, we obtain the prime factorization of i = 𝑝1
𝑞1𝑝2

𝑞2 …𝑝𝑚
𝑞𝑚.

• This takes O 𝑖 time.

• After that, report NPF(i) = (q1+1)(q2+1)…(qm+1) - m.

Another solution

• Given a number i,

– Find all non-prime factors of i using a modified sieve of eratosthenes
algorithm

– Basically, run sieve of eratosthenes algorithm but cross out all the
prime number

– Then, we count the number of non-prime numbers

Further speedup

• It is still not fast enough!

• Speedup 1: File I/O is slow.

• C language: Instead of using cin/count, use scanf/printf.

• Java language: Instead of using Scanner/System.out.println,
use BufferedReader/PrintWriter.

Further speedup

• Speedup 2: Observe that

– There are at most 3*106 queries.

– The maximum value of i is 2*106.

• By pigeon-hole principle, some queries NPF(i) are duplicates.

• To save computational time, you can store the answers in a
hash table.

Remark

• Since this question requires a lot of I/O, python will die
miserably.

Hoppers

Problem B

Author: Hubert Teo Hua Kian (Stanford University)
Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)

Problem

• Input: An undirected network with N nodes and M edges
• Malware ‘hopper’: If a node is infected, its neighbors’ neighbors will be infected.
• A network is unsafe if one node v is infected by ‘hopper’, all nodes in the network will be

infected.
• Output: The minimum of number of additional edges to make the network unsafe.

• Example 1: Add zero edge to make G unsafe.
– If we infect node 1,
– Node 2 will be infected since 1-5-4-3-2 is of even length.
– Node 3 will be infected since 1-2-3 is of even length.
– Node 4 will be infected since 1-5-4 is of even length.
– Node 5 will be infected since 1-2-3-4-5 is of even length.

1 2 3

5 4

1 2

5

3

4

Problem

• Example 2: The original graph G is safe.
– If we infect node 1,

• Node 3 will be infected since 1-2-3 is of even length.
• Cannot further propagate.

– If we infect node 2,
• Node 4 will be infected since 2-3-4 is of even length.
• Cannot further propagate.

• After we add 1 edge (1, 3), G is unsafe.
– If we infect node 1,

• Node 2 will be infected since 1-3-2 is of even length.
• Node 3 will be infected since 1-2-3 is of even length.
• Node 4 will be infected since 1-3-2 is of even length.

1 2

4 3

Idea

• Lemma: If G does not have odd cycle, then G is safe.

• Proof: If G does not have odd cycle, then G is 2-colorable,
say red and blue.

• If you infect a red node, all red nodes will be infected but
not blue nodes.

• If you infect a blue node, all blue nodes will be infected but
not red nodes.

• So, G is safe.

1 2 5

4 3 10

9

8

7

6

1 2 5

4 3 10

9

8

7

6

Idea

• Lemma: Consider an odd cycle 1 – 2 – 3 – … – n. For any node j,

– Either 1-2-3-…-j or 1-n-(n-1)-…-j is of even length.

• Proof:

• For odd j,

– 1-2-3-…-j is of even length.

• For even j,

– 1-n-(n-1)-…-j is of even length.

1

2n

3
n-1

4

5

1

2

n-1

4

n

3

5

Idea

• Lemma: Suppose the graph G is connected and has an odd cycle. G is
unsafe.
– After we infect a node v in the odd cycle, all nodes will be infected.

• Proof: Let 1-2-…-n be the odd cycle in G.

• For any node u in G,
– either 1-2-…-j-…-u or 1-n-(n-1)-…-j-…-u is of even length.

• Hence, there is an even-length path from 1 to u.

• All nodes are infected.

• G is unsafe.

1

2n

3
n-1

4

5

1

j

u

Theorem

• Lemma: Suppose the graph G has k connected component.
– Case 1: If G has an odd cycle, we need to add k-1 edges.

– Case 2: If G does not have an odd cycle, we need to add k edges.

• Proof for case 1:

• We add k-1 edges to
link all k components.

• If we infect u, u has an
length-even path to
all nodes in G.

• All nodes will be infected.

u

Theorem

• Lemma: Suppose the network G has k connected component.
– Case 1: If G has an odd cycle, we need to add k-1 edges.
– Case 2: If G does not have an odd cycle, we need to add k edges.

• Proof for case 2:
• We add k-1 edges to

link all k components.
• There is no odd cycle.
• So, the network is still unsafe.
• We add a link (v, w).
• u-v-w is a triangle, odd-length cycle.
• All nodes will be infected.

u

wv

Solution

• 1. Let k be the number of connected components

• 2. By DFS (or BFS), detect if there is an odd cycle.

• 3. If there is an odd cycle,

– Report k-1

– Otherwise, report k.

• This algorithm runs in O(N+M) time.

Largest Triangle

Problem A

Author: Dr. Steven Halim (NUS)
Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)

Problem

• Input: A set of points.

• Output: The area of the largest triangle.

Naïve solution

• Enumerate all 3 points.

• Find the one with the biggest area.

• This solution takes O(N3) time.

• It rendered Time-Limit-Exceeded (TLE)

A better solution

• We can reduce the number of points by filter out:

– Duplicate points

– Points not in convex hull

– Points that are collinear

• However, it is still not fast enough.
x

x

x

x x

x
x

x

x

Idea of the solution

• A triangle is said rooted at a if one of its endpoint is a.
• Let the convex hull be P = p0, p1, …, pn.

• Area = 0
• For i = 0 to n

– Set Ai = area of the largest triangle rooted at pi.
– If (Ai > Area) then Area = Ai

• Report Area

• Below, we show that “area of the largest triangle
rooted at pi” can be computed in O(n) time.

• So, we give an O(n2) time algorithm.
p0p1

p2

p3

p4

p5

p6

p7

p8

Find the largest triangle rooted at a

• Area of the largest triangle rooted at ‘a’ can be found using an
idea similar to the rotating caliper algorithm

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b

c





c’



Area = p0p1p2



Area = p0p1p3

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b

c



Area = p0p1p3

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b

c





c’



Area = p0p1p3Area = p0p2p4

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b

c



Area = p0p2p4

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b c

 c’



Area = p0p2p4

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b c

 c’



Area = p0p2p4

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c  pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b



c

Area = p0p2p4

Find the largest triangle rooted at a

• Let the convex hull be p0, p1, …, pN.

• Set a=p0, b=p1, c=p2

• Area = abc
• While (c pN)

– c’=next(c)
– While (abc’  abc)

• If (abc’ > Area) then Area = abc’
• c = c’

– b = next(b)

• Return Area

• This algorithm runs in O(N) time.

p0
p1

p2

p3

p5

p4

a

b c

Area = p0p2p4



Even faster solution

• O(n2) solution can pass all test cases.

• This problem actually can be solved in O(n log n) time.
– Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited.

2017.

– https://arxiv.org/pdf/1705.11035.pdf

• The above paper also showed that idea based on the
“modified rotating caliper algorithm” cannot give an O(n) time.

https://arxiv.org/pdf/1705.11035.pdf

Remark

• 1. This is the only geometry problem in the set, added to
diversify the problem types.

• 2. For large test cases in this problem, it requires to generate
many points in a convex hull.

– We actually use the solution in ICPC.SG.2015 to generate the large
test cases.

– https://open.kattis.com/problems/convex

https://open.kattis.com/problems/convex

Acknowledgement
(related to Scientific committee)

• Problem setters
– Sean Pek Yu Xuan (NUS, SGP, prelim tasks only),
– Shafaet Ashraf (Traveloka, SGP),
– Dr Felix Halim (Google, USA; ICPC World Finalist 2007),
– Raymond Kang Seng Ing (Google, USA; 2x ICPC World

Finalist 2015, 2018),
– Hubert Teo Hua Kian (Stanford University, USA; 2x ICPC

World Finalist 2016, 2018),
– Chin Zhan Xiong (Nuro, USA; 2x ICPC World Finalist 2017,

2018),
– Nguyen Tan Sy Nguyen (Anduin Transactions, VNM; 2x

ICPC World Finalist 2013, 2016),
– Kyle See (Augmented Intelligence Pros, Philippines,

World Finalist 2016),
– Irvan Jahja (NUS, SGP, 2x ICPC World Finalist 2012, 2013),
– Dr Suhendry Effendy (NUS, SGP, ICPC Asia Jakarta Head

Judge 2010-2016),
– Dr Steven Halim (NUS, SGP, 6x ICPC World Finalist (Coach

3x/RCD 2x/Attendee 1x) 2010, 2012, 2014, 2015, 2016,
2018).

• Tester
– Dr Suhendry Effendy (NUS, SGP, ICPC Asia Jakarta Head

Judge 2010-2016),
– Dr Felix Halim (Google, USA; ICPC World Finalist 2007),
– Dr Steven Halim (NUS, SGP, 6x ICPC World Finalist

(Coach) 2010, 2012, 2014-16, 2018),
– Shen Chuanqi (Google, USA; ICPC World Finalist 2015),
– Nguyen Thanh Trung (Google, SGP; ICPC World Finalist

2012, 2016).

• Honorary Judges from Kattis team
– Dr Fredrik Niemelä,
– Associate Professor Greg Hamerly.

2-stable triangle rooted at a

• Let the convex hull be P = p0, p1, …, pn. Fixed a=p0.

• A triangle is said rooted at a if one of its endpoint is a.

• A triangle abc rooted at a is said to be 2-stable if

– ab’c, abc’  abc for all b’ and c’.

• Lemma: Suppose abc and ab’c’ are
2-stable. We have:

– b  b’  c  c’ or b’  b  c  c’in P
a

b

c

b’

c’

Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.

Bitwise

Bitwise

Given:

● Sequence of N integers: A1, A2, ..., An
● The integers is forming a circle
● The sequence is divided (partitioned) into K sections
● power(section) = the bitwise OR of all integers in that section

Determine:

● The maximum bitwise AND of the powers of the sections in an optimal
partition of the circle of integers

1 <= K <= N <= 5*105, 0 <= Ai <= 109

Bitwise
Reverse the thinking:

● Given an integer X, can you divide the sequence so that the bitwise AND of
the powers of the sections is at least X?

● Imagine there is a function can(X) that can answer the previous question
● Then we can “greedy the answer”:

 int ans = 0;
 for (int i = 30; i >= 0; i--) {
 int bit = 1 << i;
 if (can(ans | bit)) {
 ans |= bit;
 }
 }
 printf("%d\n", ans);

Bitwise
can(X): How to divide the sequence so that the bitwise AND of the powers of the
sections is at least X?

● Simulation:
○ Pick a starting point in the sequence and start performing bitwise OR onwards

until the accumulator exceeds X, then you found a section.
○ From the last point, continue the process to find the next sections until you go

back to the starting point.
○ See if you managed to find at least K sections?

● How many starting points are there?
○ There are at most log(109) = 31 different starting points

Total complexity O(N * 31 * 31) = O(N)

Conveyor Belts

Conveyor Belts
Given:

● N junctions connected by M conveyor belts
● K producers located at the first K junctions
● Producer j produces a product each minute (x⋅K+j) where x≥0 and j=1,2,…,K.
● There is a deterministic route from a producer to the warehouse (junction N)
● Each conveyor belt only transports at most one product at any time
● No limit on the number of products at the junctions

Determine:

● Find the maximum number of producers which can be left running such that all the
produced products can be delivered to the warehouse

1 <= K <= N <= 300, 0 <= M <= 1000

Conveyor Belts
Observation:

● This is a graph problem (junction -> node, conveyor belt -> edge)
● How do we encode this constraint in our graph:

○ Each conveyor belt only transports at most one product at any time
● We can encode the “time” dimension by blowing up a junction into K nodes

○ Junction A is represented as K nodes in the graph (node A at time 0, 1, … K-1)
■ The time wraps around. That is, time K is equivalent to time 0

○ A conveyor belt connecting from junction A to junction B is represented as
■ K edges: one edge from node A at time i to node B at time (i + 1) % K

Conveyor Belts
Maximum flow solution:

● Add two new nodes (a source node and a sink node)
● Connect the source node to all K producers

○ Add an edge from the source to Producer i at time i with capacity 1
● Connect the warehouse at all time periods to a sink with infinite capacity

○ Add an edge from Junction N at time i (for all i = 0..K-1) to the sink
● Run maximum flow from the source to the sink

○ The maxflow value is the number of producers that can be left running
○ Use Dinic’s algorithm to avoid getting time limit exceeded

■ The runtime is proportional to the maxflow value (max = K)

Prolonged Password

Prolonged Password
Given:
• A string S of alphabet characters.
• A function f(S,T) which transforms each character Si into a string TSi.
• An integer K denoting how many times f(S,T) is performed, i.e. fK(S,T).
• An integer M denoting the number of queries.

• Each query contains an integer mi.

Determine:
 For each query, the mi

th character of fK(S,T)

1 ≤ |S| ≤ 106; 2 ≤ |Tx| ≤ 50; 1 ≤ K ≤ 1015; 1 ≤ M ≤ 1000; 1 ≤ mi ≤ 1015.

Prolonged Password
Example:

S = bccabac
Ta = ab
Tb = bac
Tc = ac
Td .. Tz are not important in this example.

f0(S,T) = bccabac
K = 1  f1(S,T) = bacacacabbacabac
K = 2  f2(S,T) = bacabacabacabacabbacbacabacabbacabac

a  ab
b  bac
c  ac

Prolonged Password

• How to generate fK(S,T) for large K?

• K can be very large, i.e. 1015  a hint for 𝑂 log𝐾 solution

• How to store fK(S,T)?

• Recall the constraints: 1 ≤ |S| ≤ 106 and 2 ≤ |Tx| ≤ 50

• The complete fK(S,T) can be 106 ∙ 501015

• Each query falls within the first 1015 characters  we cannot store 1015 characters

• We need to output only ONE character per query  we have to exploit this.

Prolonged Password
• We don’t need to generate the whole fK(S,T).

• Define = 𝑓𝐾 𝑆,𝑇

• Iterate through the string S to find out which character we should recurse down into.

• E.g.,

• 𝑂 𝑀𝐾max
𝑖

𝑇𝑖 + 𝑀 𝑆

a b a a c

30 20 30 30 50

Then, the 85th character can be obtained by
expanding ‘a’ at index-3.

Prolonged Password
To handle large K: Matrix Exponentiation

𝑁𝑎𝑎 = count of character ‘a’ in Ta.

𝑁𝑎𝑏 = count of character ‘b’ in Ta.

…

𝑁𝑧𝑎 = count of character ‘a’ in Tz.

𝑁𝑧𝑏 = count of character ‘b’ in Tz.

𝑟𝑎 = count of character ‘a’.

𝑟𝑏 = count of character ‘b’.

…

𝑟𝑧 = count of character ‘z’.

𝑟𝑎 … 𝑟𝑧
𝑁𝑎𝑎 ⋯ 𝑁𝑧𝑎
⋮ ⋱ ⋮
𝑁𝑎𝑧 ⋯ 𝑁𝑧𝑧

𝑙0 𝑐,𝑇 = 𝑟
𝑙1 𝑐,𝑇 = 𝑟 ∙ 𝑁
𝑙2 𝑐,𝑇 = 𝑟 ∙ 𝑁 ∙ 𝑁
…
𝑙𝐾 𝑐,𝑇 = 𝑟 ∙ 𝑁𝐾

𝑙𝑙𝑙𝐾 𝑐,𝑇 = 𝑙𝐾 𝑐,𝑇 1

Prolonged Password

Another problem: K is too large, 𝑙𝑙𝑙𝐾 𝑆,𝑇 will be overflow.

Observation:
• 2 ≤ |Ti|  it means the string length doubles at each iteration.

• 21015 is way too large, but 𝑚𝑖 ≤ 1015

• 1015 ≤ 250
• We can cut down K by exploiting cycle in the transformation function.

a  bda
b  cdc a  b  c  a
c  ab

Prolonged Password

Summary:

• Cut down K to ≤ 50.

• Solve by recursing and using matrix exponentiation.

Prolonged Password

Summary:

• Cut down K to ≤ 50.

• Solve by recursing and using matrix exponentiation.

However, if you solve each query independently, you will get TLE as M ≤ 1000.

 You need to solve all queries at once (in one pass).

Magical String

Magical String
Given:
• A string S which has no substring containing 3 or more identical characters.
• An integer K, the number of maximum operations.

An operation on S: Convert Si into another character (non-asterisk) s.t. S contains a
substring of 3 or more identical characters. Turn such (maximal) substring into an
asterisk.

Determine:
 The maximum number of characters in S which can be turned into asterisks with

at most K operations.

1 ≤ K, |S| ≤ 1000

Magical String
Example:

S = abacaac

If K = 1

abacaac  abaaaac : ab*c
ANS: 4

If K = 2

abacaac  aaacaac : *caac  *caaa : *c*
ANS: 6

Magical String
Example:

S = abacaac

If K = 1

abacaac  abaaaac : ab*c
ANS: 4

If K = 2

abacaac  aaacaac : *caac  *caaa : *c*
ANS: 6

This example suggests that
the solution is not incremental,

i.e. the solution for (S,K) does not
necessarily use the solution for (S,< K)

Magical String
Example:

S = abacaac

If K = 1

abacaac  abaaaac : ab*c
ANS: 4

If K = 2

abacaac  aaacaac : *caac  *caaa : *c*
ANS: 6

This example suggests that
the solution is not incremental,

i.e. the solution for (S,K) does not
necessarily use the solution for (S,< K)

Greedy does not work!

Also, the operations order does matter.

Magical String
first attempt … dynamic programming

f(S, K)  The maximum number of characters in S which can be turned into asterisks with at most K
operations (i.e. the answer we want).

𝑓 𝑆,𝐾 = max

𝑖∈𝑣𝑎𝑣𝑖𝑣 𝑆,𝑖
𝑗=[0,𝐾)

(𝑓 𝐴, 𝑗 + 𝑓 𝐵,𝐾 − 𝑗 − 1)

abacaa aabacbba

abacaaccbaabacbba
Time complexity: 𝑂 𝑆 3 ∙ 𝐾2

Definitely TLE

Magical String
… we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no
overlapping intervals and the total weight is maximized.

It’s a similar problem!

abacaaccbaabacbba
aba
 acaa
 aac
 acc
 baa
 aaba
 cbb
 bba

Magical String
… we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no
overlapping intervals and the total weight is maximized.

It’s a similar problem!

abacaaccbaabacbba
aba
 acaa
 aac
 acc
 baa
 aaba
 cbb
 bba

… but different abacaa
aba
 acaa

Magical String

In Weighted Interval Scheduling Problem, we can only take one interval.

In Magical String, we can take “both” intervals.

Magical String
• Let SINGLE be the set of all intervals obtained individually from S.

• Let EXTEND be the set of all intervals obtained by extending SINGLE
• [a, b] is in EXTEND iff its size is ≥ 3 and there is an interval [L, R] in SINGLE which can be cut into [a, b] by

other intervals in SINGLE.
• By definition, all intervals in SINGLE are in EXTEND.

 The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the
solution for Magical String.

 abacaa
aba
 acaa
 caa

[1,3]
[3,6]
[4,6] [4, 6] is obtained by cutting [3, 6] with [1, 3].

Magical String
• Generate SINGLE 𝑂 𝑆

• Generate EXTEND 𝑂 𝑆 2

Size of EXTEND = 𝑂 𝑆

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝐾

Magical String
• Generate SINGLE 𝑂 𝑆

• Generate EXTEND 𝑂 𝑆 2

Size of EXTEND = 𝑂 𝑆

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝐾

	Slide Number 1
	Prolonged Password	
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Slide Number 10
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String

