Contest debriefing

Scientific Committee

Result

Total: 50 teams

First 4 hours only	A	В	С	D	E	F	G	Н	I	J	К	L
	18/97	38/71	43/93	7/33	0/7	20/44	8/18	3/10	4/10	47/49	7/12	41/117
Solved / Tries	(19%)	(54%)	(46%)	(21%)	(0%)	(45%)	(44%)	(30%)	(40%)	(96%)	(58%)	(35%)
Average tries	3.73	1.69	1.98	2.75	1.75	1.76	2.00	1.43	1.67	1.04	1.50	2.34
Averages tries to solve	3.22	1.63	1.98	3.14	-	1.75	2.12	1.67	1.75	1.04	1.57	1.78

Ken

Felix

Suhendry

- Problem J: Free Food
- Problem C: SG Coin
- Problem L: Non-prime factors
- Problem B: Hopper
- Problem A: Largest Triangle
- Problem D: Bitwise
- Problem K: Conveyorbelts
- Problem I: Prolonged Password ⁻
- Problem E: Magical String
- (For problems G, H, F, please read the solution by yourself \bigcirc)

Free Food

Problem J

Author: Dr. Suhendry Effendy (NUS) Tester: Dr. Felix Halim (Google), Dr. Steven Halim (NUS)

Problem

- Input: N intervals ($1 \le N \le 100$)
- Output: the number of days in which free food is served.

- Note that
 - there are only 100 intervals and
 - each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array B[1..365] as zeros
- For each interval (s_i, t_i) , mark $B[s_i..t_i] = 1$.
- Report the number of bits B[i] equal 1

- Note that
 - there are only 100 intervals and
 - each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array B[1..365] as zeros
- For each interval (s_i, t_i), mark B[s_i..t_i] = 1.
- Report the number of bits B[i] equal 1

- Note that
 - there are only 100 intervals and
 - each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array B[1..365] as zeros
- For each interval (s_i, t_i), mark B[s_i..t_i] = 1.
- Report the number of bits B[i] equal 1

- Note that
 - there are only 100 intervals and
 - each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array B[1..365] as zeros
- For each interval (s_i, t_i), mark B[s_i..t_i] = 1.
- Report the number of bits B[i] equal 1

SG Coin

Problem C

Author: Dr. Felix Halim (Google) Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)

Problem

- Given a block Z with HashValue α_z (with 9 digits and 7 trailing zeros), you need to generate two blocks A and B such that
 - α_A =H(α_z ,S_A,T_A) has 9 digits and 7 trailing zeros; and
 - $\alpha_{\rm B}$ =H($\alpha_{\rm A}$,S_B,T_B) has 9 digits and 7 trailing zeros.

Simple solution

- 1. Randomly generate S_A and T_A .
- 2. Compute $\alpha_A = H(\alpha_Z, S_A, T_A)$
- 3. Randomly generate S_B and T_B .
- 4. Compute $\alpha_B = H(\alpha_A, S_B, T_B)$
- 5. Output S_A , T_A , S_B , T_B .
- The running time is slow since you need to compute H().

Speedup 1: Use a short

- The running time of H() depends on the length of transaction. So, we use one character "X" for transaction.
- 1. Randomly generate T_A.
- 2. Compute $\alpha_A = H(\alpha_Z, "X", T_A)$
- 3. Randomly generate T_B.
- 4. Compute $\alpha_B = H(\alpha_A, "X", T_B)$
- 5. Output "X", T_A, "X", T_B.

nrevHashValue: ??	nrevHashValue: a	nrevHashValue: a
Transaction: ??	Transaction: "X"	Transaction: "X"
Token: ??	Token: T.	Token: T_{a}
HashValue: α_7	HashValue: $\alpha_{A} = H(\alpha_{7}, "X", T_{A})$	HashValue: $\alpha_{\rm B}$ =H($\alpha_{\rm A}$, "X", T _B)
Dlock 7		

Observation

- Since all HashValues have 9 digits and 7 trailing zeros, there are 99 different HashValues:
 - -01000000
 - -02000000
 - -03000000
 - ...
 - 99000000

Build Lookup table

- For each hashValue α , we find a token such that 99000000=H(α , "X", β).
- Since there are only 100 HashValues, we can precompute a table T[] where
 - T[α] equals the token β such that 99000000=H(α , "X", β)

T[α]= β such that 00000000=H(α , "X", β)

- If the hashValue of block Z is $\alpha_{\rm Z}$, the output is
 - "X", T[α_z]
 - "X", T[99000000]

• By table lookup, O(1) time.

prevHashValue: ??	prevHashValue: α_z	prevHashValue: 99000000
Transaction: ??	Transaction: "X"	Transaction: "X"
Token: ??	Token: T[α _z]	Token: T[99000000]
HashValue: α_z	HashValue: 990000000=H(α_z , "X", T[α_z])	HashValue: 99000000=H(α _A , "X", T[99000000])
Block Z	Block A	Block B

Remark

• Accidentally, this problem is very similar to the problem H in Yangon 2018 (on last Sunday, 9 Dec).

• Note that we submit the problem last month.

• This is just a coincidence.

Non-Prime Factors

Problem L

Author: Dr. Steven Halim (NUS) Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)

Problem

- Input: an integer i
- Output: NPF(i), which is the number of non-prime factors of i.
- Example: i = 40.
 - 40 has 8 factors:
 - 1, <u>2</u>, 4, <u>5</u>, 8, 10, 20, 40.
 - 40 has 2 prime factors: 2, 5.
 - 40 has 6 non-prime factors:
 - 1, 4, 8, 10, 20, 40.
 - NPF(40)=6.

Theorem

- The prime factorization of i = $p_1^{q_1}p_2^{q_2} \dots p_m^{q_m}$.
- Then, the number of factors of $i = (q_1+1)(q_2+1)...(q_m+1)$.
- The number of prime factors of i = m.
- The number of non-prime factors of $i = (q_1+1)(q_2+1)...(q_m+1) m$.
- Example:
 - $-i = 40 = 2^{3*}5^1$.
 - 40 has 8=(3+1)*(1+1) factors:
 - $2^{0*}5^{0}$, $2^{0*}5^{1}$, $2^{1*}5^{0}$, $2^{1*}5^{1}$, $2^{2*}5^{0}$, $2^{2*}5^{1}$, $2^{3*}5^{0}$, $2^{3*}5^{1}$.
 - 40 has 2 prime factors: 2^{0*5^1} , 2^{1*5^0} .
 - 40 has 6=(3+1)(1+1)-2 non-prime factors:
 - 2⁰*5⁰, 2¹*5¹, 2²*5⁰, 2²*5¹, 2³*5⁰, 2³*5¹.

- Given a number i,
 - For p = 2 to \sqrt{i}
 - Check if p is a prime factor if i.
 - Then, we obtain the prime factorization of i = $p_1^{q_1}p_2^{q_2} \dots p_m^{q_m}$.
- This takes $O(\sqrt{i})$ time.

• After that, report NPF(i) = $(q_1+1)(q_2+1)...(q_m+1) - m$.

Another solution

- Given a number i,
 - Find all non-prime factors of i using a modified sieve of eratosthenes algorithm
 - Basically, run sieve of eratosthenes algorithm but cross out all the prime number
 - Then, we count the number of non-prime numbers

Further speedup

• It is still not fast enough!

- **Speedup 1**: File I/O is slow.
- C language: Instead of using cin/count, use scanf/printf.
- Java language: Instead of using Scanner/System.out.println, use BufferedReader/PrintWriter.

Further speedup

- Speedup 2: Observe that
 - There are at most $3*10^6$ queries.
 - The maximum value of i is $2*10^6$.
- By pigeon-hole principle, some queries NPF(i) are **duplicates**.

• To save computational time, you can store the answers in a hash table.

Remark

Since this question requires a lot of I/O, python will die miserably.

Hoppers

Problem B

Author: Hubert Teo Hua Kian (Stanford University) Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)

Problem

- Input: An undirected network with N nodes and M edges
- Malware 'hopper': If a node is infected, its neighbors' neighbors will be infected.
- A network is unsafe if one node v is infected by 'hopper', all nodes in the network will be infected.
- Output: The minimum of number of additional edges to make the network unsafe.
- Example 1: Add zero edge to make G unsafe.
 - If we infect node 1,
 - Node 2 will be infected since 1-5-4-3-2 is of even length.
 - Node 3 will be infected since 1-2-3 is of even length.
 - Node 4 will be infected since 1-5-4 is of even length.
 - Node 5 will be infected since 1-2-3-4-5 is of even length.

Problem

- Example 2: The original graph G is safe.
 - If we infect node 1,
 - Node 3 will be infected since 1-2-3 is of even length.
 - Cannot further propagate.
 - If we infect node 2,
 - Node 4 will be infected since 2-3-4 is of even length.
 - Cannot further propagate.
- After we add 1 edge (1, 3), G is unsafe.
 - If we infect node 1,
 - Node 2 will be infected since 1-3-2 is of even length.
 - Node 3 will be infected since 1-2-3 is of even length.
 - Node 4 will be infected since 1-3-2 is of even length.

Idea

- Lemma: If G does not have odd cycle, then G is safe.
- Proof: If G does not have odd cycle, then G is 2-colorable, say red and blue.
- If you infect a red node, all red nodes will be infected but not blue nodes.
- If you infect a blue node, all blue nodes will be infected but not red nodes.
- So, G is safe.

Idea

- Lemma: Consider an odd cycle 1 2 3 ... n. For any node j,
 Either 1-2-3-...-j or 1-n-(n-1)-...-j is of even length.
- Proof:
- For odd j,
 - 1-2-3-...-j is of even length.
- For even j,
 - 1-n-(n-1)-...-j is of even length.

Idea

n-1

- Lemma: Suppose the graph G is connected and has an odd cycle. G is unsafe.
 - After we infect a node v in the odd cycle, all nodes will be infected.
- Proof: Let 1-2-...-n be the odd cycle in G.
- For any node u in G,
 - either 1-2-...-j-...-u or 1-n-(n-1)-...-j-...-u is of even length.
- Hence, there is an even-length path from 1 to u.
- All nodes are infected.
- G is unsafe.

Theorem

- Lemma: Suppose the graph G has k connected component.
 - Case 1: If G has an odd cycle, we need to add k-1 edges.
 - Case 2: If G does not have an odd cycle, we need to add k edges.
- Proof for case 1:
- We add k-1 edges to link all k components.
- If we infect u, u has an length-even path to all nodes in G.
- All nodes will be infected.

Theorem

- Lemma: Suppose the network G has k connected component.
 - Case 1: If G has an odd cycle, we need to add k-1 edges.
 - Case 2: If G does not have an odd cycle, we need to add k edges.
- Proof for case 2:
- We add k-1 edges to link all k components.
- There is no odd cycle.
- So, the network is still unsafe.
- We add a link (v, w).
- u-v-w is a triangle, odd-length cycle.
- All nodes will be infected.

- 1. Let k be the number of connected components
- 2. By DFS (or BFS), detect if there is an odd cycle.
- 3. If there is an odd cycle,
 - Report k-1
 - Otherwise, report k.

• This algorithm runs in O(N+M) time.

Largest Triangle

Problem A

Author: Dr. Steven Halim (NUS) Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)

Problem

- Input: A set of points.
- Output: The area of the largest triangle.

Naïve solution

- Enumerate all 3 points.
- Find the one with the biggest area.

- This solution takes O(N³) time.
- It rendered Time-Limit-Exceeded (TLE)
A better solution

- We can reduce the number of points by filter out:
 - Duplicate points
 - Points not in convex hull
 - Points that are collinear

• However, it is still not fast enough.

Idea of the solution

- A triangle is said rooted at a if one of its endpoint is a.
- Let the convex hull be $P = p_0, p_1, ..., p_n$.
- Area = 0
- For i = 0 to n
 - Set A_i = area of the largest triangle rooted at p_i .
 - If $(A_i > Area)$ then Area = A_i
- Report Area
- Below, we show that "area of the largest triangle rooted at p_i" can be computed in O(n) time.
- So, we give an O(n²) time algorithm.

• Area of the largest triangle rooted at 'a' can be found using an idea similar to the rotating caliper algorithm

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c)
 - While ($\Delta abc' \geq \Delta abc$)
 - If ($\Delta abc' > Area$) then Area = $\Delta abc'$
 - c = c'
 - b = next(b)
- Return Area
- This algorithm runs in O(N) time.

Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set $a=p_0$, $b=p_1$, $c=p_2$ \leftarrow
- Area = \triangle abc \leftarrow
- While $(c \neq p_N)$
 - c'=next(c) \leftarrow
 - While ($\Delta abc' \geq \Delta abc$)
 - If ($\Delta abc' > Area$) then Area = $\Delta abc' \leftarrow$
 - c = c'
 - b = next(b)
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c)
 - While ($\Delta abc' \geq \Delta abc$)
 - If $(\Delta abc' > Area)$ then Area = $\Delta abc'$
 - c = c' **(**
 - b = next(b)
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c) \leftarrow
 - While ($\Delta abc' \geq \Delta abc$)
 - If ($\Delta abc' > Area$) then Area = $\Delta abc' \leftarrow$
 - c = c'
 - b = next(b) \leftarrow
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c)
 - While ($\Delta abc' \geq \Delta abc$)
 - If $(\Delta abc' > Area)$ then Area = $\Delta abc'$
 - c = c' **(**
 - b = next(b)
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c) \leftarrow
 - While ($\Delta abc' \geq \Delta abc$)
 - If $(\Delta abc' > Area)$ then Area = $\Delta abc'$
 - c = c'
 - b = next(b) \leftarrow
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c) \leftarrow
 - While ($\Delta abc' \geq \Delta abc$)
 - If $(\Delta abc' > Area)$ then Area = $\Delta abc'$
 - c = c'
 - b = next(b) \leftarrow
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c)
 - While ($\Delta abc' \geq \Delta abc$)
 - If $(\Delta abc' > Area)$ then Area = $\Delta abc'$
 - c = c' **(**
 - b = next(b)
- Return Area
- This algorithm runs in O(N) time.

- Let the convex hull be p_0 , p_1 , ..., p_N .
- Set a=p₀, b=p₁, c=p₂
- Area = Δabc
- While $(c \neq p_N)$
 - c'=next(c)
 - While ($\Delta abc' \geq \Delta abc$)
 - If $(\Delta abc' > Area)$ then Area = $\Delta abc'$
 - c = c'
 - b = next(b) \leftarrow
- Return Area 🔶
- This algorithm runs in O(N) time.

Even faster solution

- O(n²) solution can pass all test cases.
- This problem actually can be solved in O(n log n) time.
 - Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited.
 2017.
 - <u>https://arxiv.org/pdf/1705.11035.pdf</u>
- The above paper also showed that idea based on the "modified rotating caliper algorithm" cannot give an O(n) time.

Remark

• 1. This is the only geometry problem in the set, added to diversify the problem types.

- 2. For large test cases in this problem, it requires to generate many points in a convex hull.
 - We actually use the solution in ICPC.SG.2015 to generate the large test cases.
 - <u>https://open.kattis.com/problems/convex</u>

Acknowledgement (related to Scientific committee)

- Problem setters
 - Sean Pek Yu Xuan (NUS, SGP, prelim tasks only),
 - Shafaet Ashraf (Traveloka, SGP),
 - Dr Felix Halim (Google, USA; ICPC World Finalist 2007),
 - **Raymond Kang Seng Ing** (Google, USA; 2x ICPC World Finalist 2015, 2018),
 - Hubert Teo Hua Kian (Stanford University, USA; 2x ICPC World Finalist 2016, 2018),
 - Chin Zhan Xiong (Nuro, USA; 2x ICPC World Finalist 2017, 2018),
 - Nguyen Tan Sy Nguyen (Anduin Transactions, VNM; 2x ICPC World Finalist 2013, 2016),
 - Kyle See (Augmented Intelligence Pros, Philippines, World Finalist 2016),
 - Irvan Jahja (NUS, SGP, 2x ICPC World Finalist 2012, 2013),
 - Dr Suhendry Effendy (NUS, SGP, ICPC Asia Jakarta Head Judge 2010-2016),
 - Dr Steven Halim (NUS, SGP, 6x ICPC World Finalist (Coach 3x/RCD 2x/Attendee 1x) 2010, 2012, 2014, 2015, 2016, 2018).

- Tester
 - Dr Suhendry Effendy (NUS, SGP, ICPC Asia Jakarta Head Judge 2010-2016),
 - Dr Felix Halim (Google, USA; ICPC World Finalist 2007),
 - Dr Steven Halim (NUS, SGP, 6x ICPC World Finalist (Coach) 2010, 2012, 2014-16, 2018),
 - Shen Chuanqi (Google, USA; ICPC World Finalist 2015),
 - Nguyen Thanh Trung (Google, SGP; ICPC World Finalist 2012, 2016).
- Honorary Judges from Kattis team
 - Dr Fredrik Niemelä,
 - Associate Professor Greg Hamerly.

2-stable triangle rooted at a

- Let the convex hull be $P = p_0, p_1, ..., p_n$. Fixed $a=p_0$.
- A triangle is said rooted at a if one of its endpoint is a.
- A triangle Δ abc rooted at a is said to be 2-stable if - Δ ab'c, Δ abc' $\leq \Delta$ abc for all b' and c'.

 Lemma: Suppose ∆abc and ∆ab'c' are 2-stable. We have:

$$-b \le b' \le c \le c' \text{ or } b' \le b \le c \le c' \text{ in } P$$

Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.

Given:

- Sequence of **N** integers: **A**₁, **A**₂, ..., **A**_n
- The integers is forming a circle
- The sequence is divided (partitioned) into **K** sections
- power(section) = the **bitwise OR** of all integers in that section

Determine:

• The **maximum bitwise AND** of the powers of the sections in an optimal partition of the circle of integers

Reverse the thinking:

- Given an integer **X**, can you divide the sequence so that the **bitwise AND** of the powers of the sections is at least **X**?
- Imagine there is a function **can(X)** that can answer the previous question
- Then we can "greedy the answer":

```
int ans = 0;
for (int i = 30; i >= 0; i--) {
    int bit = 1 << i;
    if (can(ans | bit)) {
        ans |= bit;
    }
printf("%d\n", ans);
```

can(X): How to divide the sequence so that the **bitwise AND** of the powers of the sections is at least **X**?

- Simulation:
 - Pick a starting point in the sequence and start performing bitwise OR onwards until the accumulator exceeds X, then you found a section.
 - From the last point, continue the process to find the next sections until you go back to the starting point.
 - See if you managed to find at least K sections?
- How many starting points are there?
 - There are at most $log(10^9) = 31$ different starting points

Total complexity O(N * 31 * 31) = O(N)

Given:

- **N** junctions connected by **M** conveyor belts
- K producers located at the first K junctions
- Producer **j** produces a product each minute $(\mathbf{x} \cdot \mathbf{K} + \mathbf{j})$ where $\mathbf{x} \ge 0$ and j=1,2,...,K.
- There is *a deterministic route* from a producer to the warehouse (junction N)
- Each conveyor belt only transports at most one product at any time
- No limit on the number of products at the junctions

Determine:

• Find the maximum number of producers which can be left running such that all the produced products can be delivered to the warehouse

1 <= **K** <= **N** <= 300, 0 <= **M** <= 1000

Observation:

- This is a graph problem (junction -> node, conveyor belt -> edge)
- How do we encode this constraint in our graph:
 - Each conveyor belt only transports at most one product <u>at any time</u>
- We can encode the "time" dimension by blowing up a junction into K nodes
 - Junction **A** is represented as **K** nodes in the graph (node **A** at time 0, 1, ... **K**-1)
 - The time wraps around. That is, time **K** is equivalent to time 0
 - A conveyor belt connecting from junction **A** to junction **B** is represented as
 - K edges: one edge from node A at time i to node B at time (i + 1) % K

Maximum flow solution:

- Add two new nodes (a **source** node and a **sink** node)
- Connect the source node to all K producers
 - Add an edge from the source to Producer i at time i with capacity 1
- Connect the warehouse at all time periods to a sink with **infinite capacity**
 - Add an edge from Junction **N** at time **i** (for all i = 0..K-1) to the **sink**
- Run **maximum flow** from the source to the sink
 - The maxflow value is the number of producers that can be left running
 - Use **Dinic's algorithm** to avoid getting time limit exceeded
 - The runtime is proportional to the maxflow value (max = K)

Given:

- A string **S** of alphabet characters.
- A function **f(S,T)** which transforms each character **S**_i into a string **T**_{Si}.
- An integer **K** denoting how many times **f(S,T)** is performed, i.e. **f^K(S,T)**.
- An integer **M** denoting the number of queries.
 - Each query contains an integer **m**_i.

Determine:

For each query, the m_ith character of f^K(S,T)

 $1 \le |\mathbf{S}| \le 10^6$; $2 \le |\mathbf{T}_x| \le 50$; $1 \le \mathbf{K} \le 10^{15}$; $1 \le \mathbf{M} \le 1000$; $1 \le \mathbf{m}_i \le 10^{15}$.

Example:

S = bccabac

а	\rightarrow	ab
 b	\rightarrow	bac
С	\rightarrow	ас
	a ─────────────────b c	$ \begin{array}{c} a \rightarrow \\ b \rightarrow \\ c \rightarrow \end{array} $

 $T_d .. T_z$ are not important in this example.

 $f^{O}(S,T) = bccabac$

 $K = 1 \rightarrow f^{1}(S,T) = bacacacabbacabac$

 $K = 2 \rightarrow f^2(S,T) = bacabacabacabacabbacbacabacabbacabac$

- How to generate f^K(S,T) for large K?
 - K can be very large, i.e. $10^{15} \rightarrow$ a hint for $O(\log K)$ solution
- How to store $f^{K}(S,T)$?
 - Recall the constraints: $1 \le |\mathbf{S}| \le 10^6$ and $2 \le |\mathbf{T}_x| \le 50$
 - The complete $f^{K}(S,T)$ can be $10^{6} \cdot 50^{10^{15}}$
 - Each query falls within the first 10^{15} characters \rightarrow we cannot store 10^{15} characters
 - We need to output only ONE character per query \rightarrow we have to exploit this.

- We don't need to generate the whole $f^{K}(S,T)$.
 - Define = $|f^K(S,T)|$
 - Iterate through the string S to find out which character we should recurse down into.

Then, the 85th character can be obtained by expanding 'a' at index-3.

• $O\left(MK\max_{i}|T_{i}| + M|S|\right)$

To handle large K: Matrix Exponentiation

 N_{aa} = count of character 'a' in T_a. N_{ab} = count of character 'b' in T_a. ... N_{za} = count of character 'a' in T_z. N_{zb} = count of character 'b' in T_z.

 r_a = count of character 'a'. r_b = count of character 'b'.

 r_z = count of character 'z'.

...

$$(r_a \quad \dots \quad r_z) \begin{pmatrix} N_{aa} & \cdots & N_{za} \\ \vdots & \ddots & \vdots \\ N_{az} & \cdots & N_{zz} \end{pmatrix}$$

$$l^{0}(c,T) = r$$
$$l^{1}(c,T) = r \cdot N$$
$$l^{2}(c,T) = r \cdot N \cdot N$$
$$\dots$$
$$l^{K}(c,T) = r \cdot N^{K}$$

 $len^{K}(c,T) = ||l^{K}(c,T)||_{1}$

Another problem: **K** is too large, $len^{K}(S,T)$ will be overflow.

Observation:

- $2 \le |T_i| \rightarrow$ it means the string length doubles at each iteration.
- $2^{10^{15}}$ is way too large, but $m_i \leq 10^{15}$
- $10^{15} \le 2^{50}$
- We can cut down **K** by exploiting **cycle** in the transformation function.

a → bda

 $b \rightarrow cdc$ $a \rightarrow b \rightarrow c \rightarrow a$

c → ab

Summary:

- Cut down K to \leq 50.
- Solve by recursing and using matrix exponentiation.

Summary:

- Cut down K to \leq 50.
- Solve by recursing and using matrix exponentiation.

However, if you solve each query independently, you will get **TLE** as $M \le 1000$.

 \rightarrow You need to solve all queries at once (in one pass).

Magical String

Magical String

Given:

- A string **S** which has no substring containing 3 or more identical characters.
- An integer **K**, the number of maximum operations.

An operation on **S**: Convert **S**_i into another character (non-asterisk) s.t. **S** contains a substring of 3 or more identical characters. Turn such (maximal) substring into an asterisk.

Determine:

The maximum number of characters in S which can be turned into asterisks with at most K operations.

 $1 \le K, |S| \le 1000$

Magical String

Example:

S = abacaac

lf K = 1

```
abacaac → aba<u>a</u>aac : ab*c
```

ANS: 4

If K = 2

```
abacaac \rightarrow a<u>a</u>acaac : *caac \rightarrow *caa<u>a</u> : *c*
ANS: 6
```
Example:

S = abacaac

If K = 1 **abacaac** \rightarrow **aba<u>a</u>aac : ab*c** ANS: 4 This example suggests that the solution is **not** incremental, i.e. the solution for (S,K) does not necessarily use the solution for (S,< K)

If K = 2

```
abacaac \rightarrow a<u>a</u>acaac : *caac \rightarrow *caa<u>a</u> : *c*
ANS: 6
```

Example:

S = abacaac

If K = 1abacaac \rightarrow aba<u>a</u>aac : ab*c ANS: 4 If K = 2abacaac \rightarrow a<u>a</u>acaac : *caac \rightarrow *caa<u>a</u> : *c* ANS: 6 This example suggests that the solution is **not** incremental, i.e. the solution for (S,K) does not necessarily use the solution for (S,< K) Greedy does not work!

Also, the operations order does matter.

first attempt ... dynamic programming

f(S, K) → The maximum number of characters in S which can be turned into asterisks with at most K operations (i.e. the answer we want).

$$f(S,K) = \max_{\substack{i \in valid(S,i) \\ j = [0,K)}} (f(A,j) + f(B,K-j-1))$$

... we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

→ Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

t's a similar problem!	abacaaccbaabacbba
	aba
	acaa
	aac
	acc
	baa
	aaba
	cbb
	bba

... we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

→ Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

It's a similar problem!	abacaaccbaabacbba		
	acaa	but different	abacaa
	aac		aba
	асс		acaa
	baa		
	aaba		
	cbb		
	bba		

In Weighted Interval Scheduling Problem, we can only take one interval.

In Magical String, we can take "both" intervals.

- Let SINGLE be the set of all intervals obtained individually from S.
- Let EXTEND be the set of all intervals obtained by extending SINGLE
 - [a, b] is in EXTEND iff its size is ≥ 3 and there is an interval [L, R] in SINGLE which can be cut into [a, b] by
 other intervals in SINGLE.
 - By definition, all intervals in SINGLE are in EXTEND.
- → The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the solution for Magical String.

abacaa	
aba	[1,3]
acaa	[3,6]
саа	$[4,6] \longrightarrow [4,6]$ is obtained by cutting $[3,6]$ with $[1,3]$.

Generate SINGLE

O(|S|)

 $O(|S|^2)$

Generate EXTEND

Size of EXTEND = O(|S|)

• Solve WISP with K: N intervals O(NK)

- Generate SINGLE
- Generate EXTEND

O(|S|) $O(|S|^2)$

Size of EXTEND = O(|S|)

• Solve WISP with *K*: *N* intervals

O(NK)

