Contest debriefing

Scientific Committee

Total: 50 teams

Result

First 4 hours only	A	B	C	D	E	F	G	H	I	J	K	L
	$18 / 97$	$38 / 71$	$43 / 93$	$7 / 33$	$0 / 7$	$20 / 44$	$8 / 18$	$3 / 10$	$4 / 10$	$47 / 49$	$7 / 12$	$41 / 117$
Solved / Tries	(19%)	(54%)	(46%)	(21%)	(0%)	(45%)	(44%)	(30%)	(40%)	(96%)	(58%)	(35%)
Average tries	3.73	1.69	1.98	2.75	1.75	1.76	2.00	1.43	1.67	1.04	1.50	2.34
Averages tries to solve	3.22	1.63	1.98	3.14	-	1.75	2.12	1.67	1.75	1.04	1.57	1.78

- Problem J: Free Food
- Problem C: SG Coin
- Problem L: Non-prime factors

- Problem K: Conveyorbelts
- Problem I: Prolonged Password
- Problem E: Magical String

- (For problems G, H, F, please read the solution by yourself ©)

Free Food

Problem J

Author: Dr. Suhendry Effendy (NUS)
Tester: Dr. Felix Halim (Google), Dr. Steven Halim (NUS)

Problem

- Input: N intervals $(1 \leq \mathrm{N} \leq 100)$
- Output: the number of days in which free food is served.

1	2	3	4	5	6	7		364
0	1	1	1	1	0	1	365	

Solution

- Note that
- there are only 100 intervals and
- each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array $\mathrm{B}[1 . .365]$ as zeros
- For each interval $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$, mark $\mathrm{B}\left[\mathrm{s}_{\mathrm{i}} . . \mathrm{t}_{\mathrm{i}}\right]=1$.
- Report the number of bits $\mathrm{B}[\mathrm{i}]$ equal 1

1	2	3	4	5	6	7		364
0	0	0	0	0	0	0	0	0

Solution

- Note that
- there are only 100 intervals and
- each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array $\mathrm{B}[1 . .365]$ as zeros
- For each interval $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$, mark $\mathrm{B}\left[\mathrm{s}_{\mathrm{i}} . . \mathrm{t}_{\mathrm{i}}\right]=1$.
- Report the number of bits $B[i]$ equal 1

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$		364
0	1	1	1	0	0	0	365	

Solution

- Note that
- there are only 100 intervals and
- each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array $\mathrm{B}[1 . .365]$ as zeros
- For each interval $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$, mark $\mathrm{B}\left[\mathrm{s}_{\mathrm{i}} . . \mathrm{t}_{\mathrm{i}}\right]=1$.
- Report the number of bits $B[i]$ equal 1

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$		364
0	1	1	1	1	0	0	365	

Solution

- Note that
- there are only 100 intervals and
- each interval is of length at most 365.
- We use brute-force solution.
- Initialize the bit array $\mathrm{B}[1 . .365]$ as zeros
- For each interval $\left(s_{i}, \mathrm{t}_{\mathrm{i}}\right)$, mark $\mathrm{B}\left[\mathrm{s}_{\mathrm{i}} . . \mathrm{t}_{\mathrm{i}}\right]=1$.
- Report the number of bits $B[i]$ equal 1

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	$\mathbf{7}$		364
0	1	1	1	1	0	1	365	

SG Coin

Problem C

Author: Dr. Felix Halim (Google)

Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)

Problem

- Given a block Z with HashValue α_{Z} (with 9 digits and 7 trailing zeros), you need to generate two blocks A and B such that
$-\alpha_{A}=H\left(\alpha_{Z}, S_{A}, T_{A}\right)$ has 9 digits and 7 trailing zeros; and
$-\alpha_{B}=H\left(\alpha_{A}, S_{B}, T_{B}\right)$ has 9 digits and 7 trailing zeros.

prevHashValue: ??	prevHashValue: α_{z}	prevHashValue: α_{A} Transaction: S_{B}
Transaction: ??	Transaction: S_{A}	
Token: ??	Token: $\mathrm{T}_{\text {A }}$	Token: $\mathrm{T}_{\text {B }}$
HashValue: α_{z}	HashValue: $\alpha_{A}=H\left(\alpha_{Z}, S_{A}, T_{A}\right)$	HashValue: $\alpha_{B}=H\left(\alpha_{A}, S_{B}, T_{B}\right)$
Block Z	Block A	Block B

Simple solution

- 1. Randomly generate S_{A} and T_{A}.
- 2. Compute $\alpha_{A}=H\left(\alpha_{Z}, S_{A}, T_{A}\right)$
- 3. Randomly generate S_{B} and T_{B}.
- 4. Compute $\alpha_{B}=H\left(\alpha_{A}, S_{B}, T_{B}\right)$
- 5. Output $S_{A}, T_{A}, S_{B}, T_{B}$.
- The running time is slow since you need to compute $H()$.
prevHashValue: ??
Transaction: ??
Token: ??
HashValue: α_{z}

```
prevHashValue: }\mp@subsup{\alpha}{z}{
Transaction: SA
Token: \(\mathrm{T}_{\mathrm{A}}\)
HashValue: \(\alpha_{A}=H\left(\alpha_{Z}, S_{A}, T_{A}\right)\)
```

prevHashValue: α_{A}
Transaction: S_{B}
Token: T_{B}
HashValue: $\alpha_{B}=H\left(\alpha_{A}, S_{B}, T_{B}\right)$

Speedup 1: Use a short

- The running time of H() depends on the length of transaction. So, we use one character " X " for transaction.
- 1. Randomly generate T_{A}.
- 2. Compute $\alpha_{A}=H\left(\alpha_{Z},{ }^{\prime \prime} X^{\prime \prime}, T_{A}\right)$
- 3. Randomly generate T_{B}.
- 4. Compute $\alpha_{B}=H\left(\alpha_{A},{ }^{\prime \prime} X^{\prime \prime}, T_{B}\right)$
- 5. Output " X ", T_{A} " X ", T_{B}.

prevHashValue: ??	prevHashValue: α_{z} Transaction. " X "	prevHashValue: α_{A} Transaction: "X"
Transaction: ??		
Token: ??	Token: T_{A}	Token: $\mathrm{T}_{\text {B }}$
HashValue: α_{z}	HashValue: $\alpha_{A}=H\left(\alpha_{Z}\right.$, " X ", $\left.T_{A}\right)$	HashValue: $\alpha_{B}=H\left(\alpha_{A}, ~ " X\right.$ ", $\left.T_{B}\right)$
Block Z	Block A	Block B

Observation

- Since all HashValues have 9 digits and 7 trailing zeros, there are 99 different HashValues:
- 010000000
- 020000000
- 030000000
- ...
- 990000000

Build Lookup table

- For each hashValue α, we find a token such that $990000000=H(\alpha, " X ", \beta)$.
- Since there are only 100 HashValues, we can precompute a table T[] where
$-\mathrm{T}[\alpha]$ equals the token β such that 990000000=H(α, " X ", β)

$T[\alpha]=\beta$ such that $000000000=H(\alpha, " X$ ", $\beta)$

Solution

- If the hashValue of block Z is α_{z}, the output is
- " X ", $T\left[\alpha_{z}\right]$
- "X", T[990000000]
- By table lookup, O(1) time.

prevHashValue: ??
Transaction: ??
Token: ??
HashValue: α_{z}

Block Z

```
prevHashValue: }\mp@subsup{\alpha}{z}{
Transaction: "X"
Token: T[\alpha [ ]
HashValue: 990000000=H( \(\left.\alpha_{z}, ~ " X ", ~ T\left[\alpha_{z}\right]\right)\)
```

prevHashValue: 990000000
Transaction: "X"
Token: T[990000000]
HashValue: 990000000=H(α_{A}, "X", T[990000000])

Remark

- Accidentally, this problem is very similar to the problem H in Yangon 2018 (on last Sunday, 9 Dec).
- Note that we submit the problem last month.
- This is just a coincidence.

Non-Prime Factors

Problem L

Author: Dr. Steven Halim (NUS)
Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)

Problem

- Input: an integer i
- Output: NPF(i), which is the number of non-prime factors of i.
- Example: $\mathrm{i}=40$.
- 40 has 8 factors:
- 1, $\underline{2}, 4, \underline{5}, 8,10,20,40$.
- 40 has 2 prime factors: 2,5 .
- 40 has 6 non-prime factors:
- 1, 4, 8, 10, 20, 40.
$-\operatorname{NPF}(40)=6$.

Theorem

- The prime factorization of $\mathrm{i}=p_{1}{ }^{q_{1}} p_{2}{ }^{q_{2}} \ldots p_{m}{ }^{q_{m}}$.
- Then, the number of factors of $i=\left(q_{1}+1\right)\left(q_{2}+1\right) \ldots\left(q_{m}+1\right)$.
- The number of prime factors of $i=m$.
- The number of non-prime factors of $i=\left(q_{1}+1\right)\left(q_{2}+1\right) \ldots\left(q_{m}+1\right)-m$.
- Example:
$-i=40=2^{3 *} 5^{1}$.
-40 has $8=(3+1)^{*}(1+1)$ factors:
- $2^{0 *} 5^{0}, 2^{0 *} 5^{1}, 2^{1 *} 5^{0}, 2^{1 *} 5^{1}, 2^{2 *} 5^{0}, 2^{2 *} 5^{1}, 2^{3 *} 5^{0}, 2^{3 *} 5^{1}$.
-40 has 2 prime factors: $\underline{2}^{0 *} 5^{1}, \underline{2^{*} 5^{0}}$.
-40 has $6=(3+1)(1+1)-2$ non-prime factors:
- $2^{0 *} 5^{0}, 2^{1 *} 5^{1}, 2^{2 *} 5^{0}, 2^{2 *} 5^{1}, 2^{3 *} 5^{0}, 2^{3 *} 5^{1}$.

Solution

- Given a number i ,
- For $p=2$ to \sqrt{i}
- Check if p is a prime factor if i.
- Then, we obtain the prime factorization of $\mathrm{i}=p_{1}{ }^{q_{1}} p_{2}{ }^{q_{2}} \ldots p_{m}{ }^{q_{m}}$.
- This takes $O(\sqrt{i})$ time.
- After that, report NPF(i) $=\left(q_{1}+1\right)\left(q_{2}+1\right) \ldots\left(q_{m}+1\right)-m$.

Another solution

- Given a number i,
- Find all non-prime factors of i using a modified sieve of eratosthenes algorithm
- Basically, run sieve of eratosthenes algorithm but cross out all the prime number
- Then, we count the number of non-prime numbers

Further speedup

- It is still not fast enough!
- Speedup 1: File I/O is slow.
- C language: Instead of using cin/count, use scanf/printf.
- Java language: Instead of using Scanner/System.out.printIn, use BufferedReader/PrintWriter.

Further speedup

- Speedup 2: Observe that
- There are at most $3^{*} 10^{6}$ queries.
- The maximum value of i is $2^{*} 10^{6}$.
- By pigeon-hole principle, some queries NPF(i) are duplicates.
- To save computational time, you can store the answers in a hash table.

Remark

- Since this question requires a lot of I/O, python will die miserably.

Hoppers

Problem B

Author: Hubert Teo Hua Kian (Stanford University)
Tester: Dr. Suhendry Effendy (NUS), Dr. Steven Halim (NUS)

Problem

- Input: An undirected network with N nodes and M edges
- Malware 'hopper': If a node is infected, its neighbors' neighbors will be infected.
- A network is unsafe if one node v is infected by 'hopper', all nodes in the network will be infected.
- Output: The minimum of number of additional edges to make the network unsafe.
- Example 1: Add zero edge to make G unsafe.
- If we infect node 1,
- Node 2 will be infected since 1-5-4-3-2 is of even length.
- Node 3 will be infected since 1-2-3 is of even length.
- Node 4 will be infected since 1-5-4 is of even length.
- Node 5 will be infected since 1-2-3-4-5 is of even length.

Problem

- Example 2: The original graph G is safe.
- If we infect node 1,
- Node 3 will be infected since 1-2-3 is of even length.
- Cannot further propagate.
- If we infect node 2,
- Node 4 will be infected since 2-3-4 is of even length.

- Cannot further propagate.
- After we add 1 edge (1,3), G is unsafe.
- If we infect node 1,
- Node 2 will be infected since 1-3-2 is of even length.
- Node 3 will be infected since 1-2-3 is of even length.
- Node 4 will be infected since 1-3-2 is of even length.

Idea

- Lemma: If G does not have odd cycle, then G is safe.
- Proof: If G does not have odd cycle, then G is 2-colorable, say red and blue.
- If you infect a red node, all red nodes will be infected but
 not blue nodes.
- If you infect a blue node, all blue nodes will be infected but not red nodes.
- So, G is safe.

Idea

- Lemma: Consider an odd cycle 1-2-3-... - n. For any node j,
- Either 1-2-3-...-j or $1-\mathrm{n}-(\mathrm{n}-1)-\ldots-\mathrm{j}$ is of even length.
- Proof:
- For odd j ,
- 1-2-3-...j is of even length.
- For even j ,
- $1-n-(n-1)-\ldots-\mathrm{j}$ is of even length.

Idea

- Lemma: Suppose the graph G is connected and has an odd cycle. G is unsafe.
- After we infect a node vin the odd cycle, all nodes will be infected.
- Proof: Let 1-2-...-n be the odd cycle in G.
- For any node u in G,
- either 1-2-...-j-...-u or 1-n-(n-1)-...-j-...-u is of even length.
- Hence, there is an even-length path from 1 to u.
- All nodes are infected.
- G is unsafe.

Theorem

- Lemma: Suppose the graph G has k connected component.
- Case 1: If G has an odd cycle, we need to add $\mathrm{k}-1$ edges.
- Case 2: If G does not have an odd cycle, we need to add k edges.
- Proof for case 1:
- We add k-1 edges to link all k components.
- If we infect u, u has an length-even path to all nodes in G.
- All nodes will be infected.

Theorem

- Lemma: Suppose the network G has k connected component.
- Case 1: If G has an odd cycle, we need to add k-1 edges.
- Case 2: If G does not have an odd cycle, we need to add k edges.
- Proof for case 2:
- We add k-1 edges to link all k components.
- There is no odd cycle.
- So, the network is still unsafe.
- We add a link (v, w).
- u-v-w is a triangle, odd-length cycle.
- All nodes will be infected.

Solution

- 1. Let k be the number of connected components
- 2. By DFS (or BFS), detect if there is an odd cycle.
- 3. If there is an odd cycle,
- Report k-1
- Otherwise, report k.
- This algorithm runs in $\mathrm{O}(\mathrm{N}+\mathrm{M})$ time.

Largest Triangle

Problem A

Author: Dr. Steven Halim (NUS)
Tester: Dr. Felix Halim (Google), Dr. Suhendry Effendy (NUS)

Problem

- Input: A set of points.
- Output: The area of the largest triangle.

Naïve solution

- Enumerate all 3 points.
- Find the one with the biggest area.
- This solution takes $\mathrm{O}\left(\mathrm{N}^{3}\right)$ time.
- It rendered Time-Limit-Exceeded (TLE)

A better solution

- We can reduce the number of points by filter out:
- Duplicate points
- Points not in convex hull
- Points that are collinear
- However, it is still not fast enough.

Idea of the solution

- A triangle is said rooted at a if one of its endpoint is a.
- Let the convex hull be $P=p_{0}, p_{1}, \ldots, p_{n}$.
- Area $=0$
- For $\mathrm{i}=0$ to n
- Set $A_{i}=$ area of the largest triangle rooted at p_{i}.
- If $\left(A_{i}>\right.$ Area) then Area $=A_{i}$
- Report Area
- Below, we show that "area of the largest triangle rooted at $p_{i}^{\prime \prime}$ can be computed in $O(n)$ time.
- So, we give an $O\left(n^{2}\right)$ time algorithm.

Find the largest triangle rooted at a

- Area of the largest triangle rooted at ' a ' can be found using an idea similar to the rotating caliper algorithm

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n e x t(c)$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If ($\Delta a b c^{\prime}>$ Area) then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-b=n e x t(b)$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2} \leftarrow$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n e x t(c)$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If ($\Delta a b c^{\prime}>$ Area) then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-b=\operatorname{next}(b)$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

$$
\text { Area }=\Delta p_{0} p_{1} p_{3}
$$

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n e x t(c)$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If $\left(\Delta a b c^{\prime}>\right.$ Area $)$ then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-b=n e x t(b)$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

$$
\text { Area }=\Delta p_{0} p_{1} p_{3}
$$

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=$ next(c) \leftarrow
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If ($\Delta \mathrm{abc} c^{\prime}>$ Area) then Area $=\Delta a b c^{\prime} \leftarrow$
- $c=c^{\prime}$
$-\mathrm{b}=\operatorname{next}(\mathrm{b}) \leftarrow$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

$$
\text { Area }=\Delta p_{0} p_{2} p_{4}
$$

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n e x t(c)$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If $\left(\Delta a b c^{\prime}>\right.$ Area $)$ then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-b=\operatorname{next}(b)$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n \operatorname{ext}(c) \leftarrow$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If $\left(\Delta a b c^{\prime}>\right.$ Area $)$ then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-b=\operatorname{next}(b) \leftarrow$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

$$
\text { Area }=\Delta p_{0} p_{2} p_{4}
$$

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n \operatorname{ext}(c) \leftarrow$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If ($\Delta \mathrm{abc} c^{\prime}>$ Area) then Area $=\Delta \mathrm{abc} c^{\prime}$
- $c=c^{\prime}$
$-b=\operatorname{next}(b) \leftarrow$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta a b c$
- While $\left(c \neq p_{N}\right)$
- $c^{\prime}=n e x t(c)$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If $\left(\Delta a b c^{\prime}>\right.$ Area $)$ then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-b=n e x t(b)$
- Return Area

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

$$
\text { Area }=\Delta p_{0} p_{2} p_{4}
$$

Find the largest triangle rooted at a

- Let the convex hull be $p_{0}, p_{1}, \ldots, p_{N}$.
- Set $a=p_{0}, b=p_{1}, c=p_{2}$
- Area $=\Delta \mathrm{abc}$
- While ($c \neq p_{N}$)
- $c^{\prime}=n e x t(c)$
- While ($\Delta \mathrm{abc} c^{\prime} \geq \Delta \mathrm{abc}$)
- If ($\Delta a b c^{\prime}>$ Area) then Area $=\Delta a b c^{\prime}$
- $c=c^{\prime}$
$-\mathrm{b}=\operatorname{next}(\mathrm{b}) \leftarrow$
- Return Area \leftarrow

- This algorithm runs in $\mathrm{O}(\mathrm{N})$ time.

Even faster solution

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ solution can pass all test cases.
- This problem actually can be solved in $O(n \log n)$ time.
- Keikha et al. Maximum-Area Triangle in a Convex Polygon, Revisited. 2017.
- https://arxiv.org/pdf/1705.11035.pdf
- The above paper also showed that idea based on the "modified rotating caliper algorithm" cannot give an O(n) time.

Remark

- 1. This is the only geometry problem in the set, added to diversify the problem types.
- 2. For large test cases in this problem, it requires to generate many points in a convex hull.
- We actually use the solution in ICPC.SG. 2015 to generate the large test cases.
- https://open.kattis.com/problems/convex

Acknowledgement (related to Scientific committee)

- Problem setters
- Sean Pek Yu Xuan (NUS, SGP, prelim tasks only),
- Shafaet Ashraf (Traveloka, SGP),
- Dr Felix Halim (Google, USA; ICPC World Finalist 2007),
- Raymond Kang Seng Ing (Google, USA; 2x ICPC World Finalist 2015, 2018),
- Hubert Teo Hua Kian (Stanford University, USA; 2x ICPC World Finalist 2016, 2018),
- Chin Zhan Xiong (Nuro, USA; $2 \times$ ICPC World Finalist 2017, 2018),
- Nguyen Tan Sy Nguyen (Anduin Transactions, VNM; 2x ICPC World Finalist 2013, 2016),
- Kyle See (Augmented Intelligence Pros, Philippines, World Finalist 2016),
- Irvan Jahja (NUS, SGP, 2x ICPC World Finalist 2012, 2013),
- Dr Suhendry Effendy (NUS, SGP, ICPC Asia Jakarta Head Judge 2010-2016),
- Dr Steven Halim (NUS, SGP, 6x ICPC World Finalist (Coach 3x/RCD 2x/Attendee 1x) 2010, 2012, 2014, 2015, 2016, 2018).
- Tester
- Dr Suhendry Effendy (NUS, SGP, ICPC Asia Jakarta Head Judge 2010-2016),
- Dr Felix Halim (Google, USA; ICPC World Finalist 2007),
- Dr Steven Halim (NUS, SGP, 6x ICPC World Finalist (Coach) 2010, 2012, 2014-16, 2018),
- Shen Chuanqi (Google, USA; ICPC World Finalist 2015),
- Nguyen Thanh Trung (Google, SGP; ICPC World Finalist 2012, 2016).
- Honorary Judges from Kattis team
- Dr Fredrik Niemelä,
- Associate Professor Greg Hamerly.

2-stable triangle rooted at a

- Let the convex hull be $P=p_{0}, p_{1}, \ldots, p_{n}$. Fixed $a=p_{0}$.
- A triangle is said rooted at a if one of its endpoint is a.
- A triangle $\Delta a b c$ rooted at a is said to be 2 -stable if
$-\Delta a b^{\prime} c, \Delta a b c^{\prime} \leq \Delta a b c$ for all b^{\prime} and c^{\prime}.
- Lemma: Suppose $\Delta \mathrm{abc}$ and $\Delta \mathrm{ab}^{\prime} \mathrm{c}^{\prime}$ are 2-stable. We have:

$$
-\mathrm{b} \leq \mathrm{b}^{\prime} \leq \mathrm{c} \leq \mathrm{c}^{\prime} \text { or } \mathrm{b}^{\prime} \leq \mathrm{b} \leq \mathrm{c} \leq \mathrm{c}^{\prime} \text { in } \mathrm{P}
$$

Bitwise

Bitwise

Given:

- Sequence of \mathbf{N} integers: $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$
- The integers is forming a circle
- The sequence is divided (partitioned) into \mathbf{K} sections
- power(section) = the bitwise OR of all integers in that section

Determine:

- The maximum bitwise AND of the powers of the sections in an optimal partition of the circle of integers
$1<=\mathrm{K}<=\mathrm{N}<=5^{*} 10^{5}, 0<=\mathrm{A}_{\mathrm{i}}<=10^{9}$

Bitwise

Reverse the thinking:

- Given an integer \mathbf{X}, can you divide the sequence so that the bitwise AND of the powers of the sections is at least \mathbf{X} ?
- Imagine there is a function $\mathbf{c a n}(\mathbf{X})$ that can answer the previous question
- Then we can "greedy the answer":

```
int ans = 0;
for (int i = 30; i >= 0; i--) {
    int bit = 1 << i;
    if (can(ans | bit)) {
        ans |= bit;
    }
}
printf("%d\n", ans);
```


Bitwise

can(X): How to divide the sequence so that the bitwise AND of the powers of the sections is at least \mathbf{X} ?

- Simulation:
- Pick a starting point in the sequence and start performing bitwise OR onwards until the accumulator exceeds \mathbf{X}, then you found a section.
- From the last point, continue the process to find the next sections until you go back to the starting point.
- See if you managed to find at least K sections?
- How many starting points are there?
- There are at most $\log \left(10^{9}\right)=31$ different starting points

Total complexity $\mathrm{O}(\mathrm{N}$ * 31 * 31) $=\mathrm{O}(\mathrm{N})$

Conveyor Belts

Conveyor Belts

Given:

- \mathbf{N} junctions connected by \mathbf{M} conveyor belts
- K producers located at the first \mathbf{K} junctions
- Producer \mathbf{j} produces a product each minute $(\mathbf{x} \cdot \mathbf{K}+\mathbf{j})$ where $\mathbf{x} \geq 0$ and $\mathrm{j}=1,2, \ldots, \mathrm{~K}$.
- There is a deterministic route from a producer to the warehouse (junction N)
- Each conveyor belt only transports at most one product at any time
- No limit on the number of products at the junctions

Determine:

- Find the maximum number of producers which can be left running such that all the produced products can be delivered to the warehouse
$1<=\mathrm{K}<=\mathrm{N}<=300,0<=\mathrm{M}<=1000$

Conveyor Belts

Observation:

- This is a graph problem (junction -> node, conveyor belt -> edge)
- How do we encode this constraint in our graph:
- Each conveyor belt only transports at most one product at any time
- We can encode the "time" dimension by blowing up a junction into K nodes
- Junction \mathbf{A} is represented as \mathbf{K} nodes in the graph (node \mathbf{A} at time $0,1, \ldots \mathrm{~K}-1$)
- The time wraps around. That is, time \mathbf{K} is equivalent to time 0
- A conveyor belt connecting from junction \mathbf{A} to junction \mathbf{B} is represented as
- K edges: one edge from node \mathbf{A} at time \mathbf{i} to node \mathbf{B} at time ($\mathbf{i}+\mathbf{1}$) \% K

Conveyor Belts

Maximum flow solution:

- Add two new nodes (a source node and a sink node)
- Connect the source node to all K producers
- Add an edge from the source to Producer i at time i with capacity 1
- Connect the warehouse at all time periods to a sink with infinite capacity
- Add an edge from Junction \mathbf{N} at time \mathbf{i} (for all $\mathbf{i}=0$..K-1) to the sink
- Run maximum flow from the source to the sink
- The maxflow value is the number of producers that can be left running
- Use Dinic's algorithm to avoid getting time limit exceeded
- The runtime is proportional to the maxflow value ($\max =\mathbf{K}$)

Prolonged Password

Prolonged Password

Given:

- A string S of alphabet characters.
- A function $f(S, T)$ which transforms each character S_{i} into a string $T_{S i}$.
- An integer K denoting how many times $f(S, T)$ is performed, i.e. $f^{\mathrm{K}}(\mathrm{S}, \mathrm{T})$.
- An integer M denoting the number of queries.
- Each query contains an integer m_{i}.

Determine:

* For each query, the $\mathrm{m}_{\mathrm{i}}^{\text {th }}$ character of $\mathrm{f}^{\mathrm{k}}(\mathrm{S}, \mathrm{T})$
$1 \leq|S| \leq 10^{6} ; 2 \leq\left|T_{x}\right| \leq 50 ; 1 \leq K \leq 10^{15} ; 1 \leq M \leq 1000 ; 1 \leq m_{i} \leq 10^{15}$.

Prolonged Password

Example:
S = bccabac
$T_{a}=a b$
$a \rightarrow a b$
$T_{b}=b a c$
$\mathrm{T}_{\mathrm{c}}=\mathrm{ac}$
$c \rightarrow$ ac
$T_{d} . . T_{z}$ are not important in this example.
$f^{0}(S, T)=b c c a b a c$
$K=1 \rightarrow f^{1}(S, T)=$ bacacacabbacabac
$K=2 \rightarrow f^{2}(S, T)=$ bacabacabacabacabbacbacabacabbacabac

Prolonged Password

- How to generate $\mathrm{f}^{\mathrm{K}}(\mathrm{S}, \mathrm{T})$ for large K ?
- K can be very large, i.e. $10^{15} \rightarrow$ a hint for $O(\log K)$ solution
- How to store $f^{K}(S, T)$?
- Recall the constraints: $1 \leq|\mathrm{S}| \leq 10^{6}$ and $2 \leq\left|\mathrm{T}_{\mathrm{x}}\right| \leq 50$
- The complete $\mathrm{f}^{\mathrm{K}}(\mathrm{S}, \mathrm{T})$ can be $10^{6} \cdot 50^{10^{15}}$
- Each query falls within the first 10^{15} characters \rightarrow we cannot store 10^{15} characters
- We need to output only ONE character per query \rightarrow we have to exploit this.

Prolonged Password

- We don't need to generate the whole $f^{k}(S, T)$.
- Define $=\left|f^{K}(S, T)\right|$
- Iterate through the string S to find out which character we should recurse down into.
- E.g.,

Then, the $85^{\text {th }}$ character can be obtained by expanding ' a ' at index-3.

- $O\left(M K \max _{i}\left|T_{i}\right|+M|S|\right)$

Prolonged Password

To handle large K: Matrix Exponentiation
$N_{a a}=$ count of character ' a ' in T_{a}.
$N_{a b}=$ count of character ' b ' in T_{a}.
$N_{z a}=$ count of character ' a ' in T_{z}.
$N_{z b}=$ count of character ' b ' in T_{z}.
$r_{a}=$ count of character ' a '.
$r_{b}=$ count of character ' b '.
$r_{z}=$ count of character ' z '.

$$
\left(\begin{array}{lll}
r_{a} & \cdots & r_{z}
\end{array}\right)\left(\begin{array}{ccc}
N_{a a} & \cdots & N_{z a} \\
\vdots & \ddots & \vdots \\
N_{a z} & \cdots & N_{z z}
\end{array}\right)
$$

$$
\begin{aligned}
& l^{0}(c, T)=r \\
& l^{1}(c, T)=r \cdot N \\
& l^{2}(c, T)=r \cdot N \cdot N
\end{aligned}
$$

$$
l^{K}(c, T)=r \cdot N^{K}
$$

$$
\operatorname{len}^{K}(c, T)=\left\|l^{K}(c, T)\right\|_{1}
$$

Prolonged Password

Another problem: K is too large, len ${ }^{K}(S, T)$ will be overflow.

Observation:

- $2 \leq\left|T_{i}\right| \rightarrow$ it means the string length doubles at each iteration.
- $2^{10^{15}}$ is way too large, but $m_{i} \leq 10^{15}$
- $10^{15} \leq 2^{50}$
- We can cut down K by exploiting cycle in the transformation function.
$a \rightarrow b d a$
$b \rightarrow c d c \quad a \rightarrow b \rightarrow c \rightarrow a$
$c \rightarrow a b$

Prolonged Password

Summary:

- Cut down K to ≤ 50.
- Solve by recursing and using matrix exponentiation.

Prolonged Password

Summary:

- Cut down K to ≤ 50.
- Solve by recursing and using matrix exponentiation.

However, if you solve each query independently, you will get TLE as $\mathrm{M} \leq 1000$.
\rightarrow You need to solve all queries at once (in one pass).

Magical String

Magical String

Given:

- A string S which has no substring containing 3 or more identical characters.
- An integer K, the number of maximum operations.

An operation on S : Convert S_{i} into another character (non-asterisk) s.t. S contains a substring of 3 or more identical characters. Turn such (maximal) substring into an asterisk.

Determine:

* The maximum number of characters in S which can be turned into asterisks with at most K operations.
$1 \leq K,|S| \leq 1000$

Magical String

Example:
s = abacaac

If $K=1$
abacaac \rightarrow abaaaac : $a b^{*} c$
ANS: 4

If $K=2$
abacaac \rightarrow aaacaac $: *$ caac \rightarrow *caaa $:{ }^{*} c^{*}$
ANS: 6

Magical String

Example:
S = abacaac

If $K=1$
abacaac \rightarrow abaaaac : $a b^{*} c$
ANS: 4
This example suggests that the solution is not incremental, i.e. the solution for (S, K) does not necessarily use the solution for $(S,<K)$

```
If K=2
abacaac }->\mathrm{ alacaac : *caac }->\mp@subsup{}{}{*}\mathrm{ *aad : *c*
```

ANS: 6

Magical String

Example:
S = abacaac

If $K=1$
abacaac \rightarrow abaaaac : $a b^{*} c$
ANS: 4

If $K=2$
This example suggests that the solution is not incremental, i.e. the solution for (S, K) does not necessarily use the solution for $(S,<K)$

Greedy does not work!
abacaac \rightarrow aaacaac $: *$ caac $\rightarrow{ }^{*}$ caaa $:{ }^{*} c^{*}$
ANS: 6
Also, the operations order does matter.

Magical String

first attempt ... dynamic programming
$f(S, K) \rightarrow$ The maximum number of characters in S which can be turned into asterisks with at most K operations (i.e. the answer we want).

$$
f(S, K)=\max _{\substack{i \in v a l i d \\ j=[0, K)}}(f(A, j)+f(B, K-j-1))
$$

abacaaccbaabacbba
abacaa

Time complexity: $O\left(|S|^{3} \cdot K^{2}\right)$
Definitely TLE

Magical String

we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

\rightarrow Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

It's a similar problem!

```
abacaaccbaabacbba
aba
    acaa
        aac
        acc
            baa
                aaba
                    cbb
                    bba
```


Magical String

we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

\rightarrow Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

It's a similar problem!

Magical String

In Weighted Interval Scheduling Problem, we can only take one interval.

In Magical String, we can take "both" intervals.

Magical String

- Let SINGLE be the set of all intervals obtained individually from S.
- Let EXTEND be the set of all intervals obtained by extending SINGLE
- $[a, b]$ is in EXTEND iff its size is ≥ 3 and there is an interval $[L, R]$ in SINGLE which can be cut into $[a, b]$ by other intervals in SINGLE.
- By definition, all intervals in SINGLE are in EXTEND.
\rightarrow The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the solution for Magical String.

```
abacaa
aba [1,3]
    acaa [3,6]
    caa [4,6] \longrightarrow[4,6] is obtained by cutting [3,6] with [1,3].
```


Magical String

- Generate SINGLE
$O(|S|)$
- Generate EXTEND

Size of EXTEND $=O(|S|)$

- Solve WISP with K : N intervals
$O(N K)$

Magical String

- Generate SINGLE

$$
O(|S|)
$$

- Generate EXTEND

Size of EXTEND $=O(|S|)$

- Solve WISP with $K: N$ intervals
$O(N K)$

